Endothelium-restricted endothelin-1 overexpression in type 1 diabetes worsens atherosclerosis and immune cell infiltration via NOX1

Author:

Ouerd Sofiane1,Idris-Khodja Noureddine1ORCID,Trindade Michelle2ORCID,Ferreira Nathanne S1ORCID,Berillo Olga1ORCID,Coelho Suellen C1ORCID,Neves Mario F2ORCID,Jandeleit-Dahm Karin A3,Paradis Pierre1ORCID,Schiffrin Ernesto L14ORCID

Affiliation:

1. Hypertension and Vascular Research Unit, Lady Davis Institute for Medical Research, Montréal, QC, Canada

2. Department of Clinical Medicine, State University of Rio de Janeiro, Rio de Janeiro, Brazil

3. Baker IDI Heart & Diabetes Research Institute, Melbourne, Australia

4. Department of Medicine, Sir Mortimer B. Davis-Jewish General Hospital, McGill University, #B-127 3755 Cote Ste-Catherine Road, Montréal, QC H3T 1E2, Canada

Abstract

Abstract Aims NADPH oxidase (NOX) 1 but not NOX4-dependent oxidative stress plays a role in diabetic vascular disease, including atherosclerosis. Endothelin (ET)-1 has been implicated in diabetes-induced vascular complications. We showed that crossing mice overexpressing human ET-1 selectively in endothelium (eET-1) with apolipoprotein E knockout (Apoe−/−) mice enhanced high-fat diet-induced atherosclerosis in part by increasing oxidative stress. We tested the hypothesis that ET-1 overexpression in the endothelium would worsen atherosclerosis in type 1 diabetes through a mechanism involving NOX1 but not NOX4. Methods and results Six-week-old male Apoe−/− and eET-1/Apoe−/− mice with or without Nox1 (Nox1−/y) or Nox4 knockout (Nox4−/−) were injected intraperitoneally with either vehicle or streptozotocin (55 mg/kg/day) for 5 days to induce type 1 diabetes and were studied 14 weeks later. ET-1 overexpression increased 2.5-fold and five-fold the atherosclerotic lesion area in the aortic sinus and arch of diabetic Apoe−/− mice, respectively. Deletion of Nox1 reduced aortic arch plaque size by 60%; in contrast, Nox4 knockout increased lesion size by 1.5-fold. ET-1 overexpression decreased aortic sinus and arch plaque alpha smooth muscle cell content by ∼35% and ∼50%, respectively, which was blunted by Nox1 but not Nox4 knockout. Reactive oxygen species production was increased two-fold in aortic arch perivascular fat of diabetic eET-1/Apoe−/− and eET-1/Apoe−/−/Nox4−/− mice but not eET-1/Apoe−/−/Nox1y/− mice. ET-1 overexpression enhanced monocyte/macrophage and CD3+ T-cell infiltration ∼2.7-fold in the aortic arch perivascular fat of diabetic Apoe−/− mice. Both Nox1 and Nox4 knockout blunted CD3+ T-cell infiltration whereas only Nox1 knockout prevented the monocyte/macrophage infiltration in diabetic eET-1/Apoe−/− mice. Conclusion Endothelium ET-1 overexpression enhances the progression of atherosclerosis in type 1 diabetes, perivascular oxidative stress, and inflammation through NOX1.

Funder

Canadian Institutes of Health Research

CIHR First Pilot Foundation

Canada Research Chair

CRC Government of Canada/CIHR Program

Canada Fund for Innovation

Société Québécoise d’hypertension artérielle

‘Fonds de recherché du Québec en Santé’

CIHR Canada Graduate Scholarship-Master’s scholarship

National Council for Scientific and Technological Development of Brazil

Publisher

Oxford University Press (OUP)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3