Ancestral plastics exposure induces transgenerational disease-specific sperm epigenome-wide association biomarkers

Author:

Thorson Jennifer L M1,Beck Daniel1,Ben Maamar Millissia1,Nilsson Eric E1,Skinner Michael K1ORCID

Affiliation:

1. School of Biological Sciences, Center for Reproductive Biology, Washington State University, Pullman, WA, USA

Abstract

Abstract Plastic-derived compounds are one of the most frequent daily worldwide exposures. Previously a mixture of plastic-derived toxicants composed of bisphenol A, bis(2-ethylhexyl) phthalate, and dibutyl phthalate at low-dose exposures of a gestating female rats was found to promote the epigenetic transgenerational inheritance of disease to the offspring (F1 generation), grand-offspring (F2 generation), and great-grand-offspring (F3 generation). Epigenetic analysis of the male sperm was found to result in differential DNA methylation regions (DMRs) in the transgenerational F3 generation male sperm. The current study is distinct and was designed to use an epigenome-wide association study to identify potential sperm DNA methylation biomarkers for specific transgenerational diseases. Observations indicate disease-specific DMRs called epimutations in the transgenerational F3 generation great-grand-offspring of rats ancestrally exposed to plastics. The epigenetic DMR biomarkers were identified for testis disease, kidney disease, and multiple (≥2) diseases. These disease sperm epimutation biomarkers were found to be predominantly disease-specific. The genomic locations and features of these DMRs were identified. Interestingly, the disease-specific DMR-associated genes were previously shown to be linked with each of the specific diseases. Therefore, the germline has ancestrally derived epimutations that potentially transmit transgenerational disease susceptibilities. Epigenetic biomarkers for specific diseases could be used as diagnostics to facilitate clinical management of disease and preventative medicine.

Funder

John Templeton Foundation

M.K.S. and National Institures of Health

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3