Loss-of-function variants in GLMN are associated with generalized skin hyperpigmentation with or without glomuvenous malformation

Author:

Jiang Xingyuan12ORCID,Yang Chao1,Wang Zhaoyang3,Liang Lina1,Gong Zhuoqing2ORCID,Huang Shimiao1,Xu Zigang3,Zhang Bin3ORCID,Pei Xiaoping1,Cai Liangqi4,Wang Huijun1ORCID,Lin Zhimiao1ORCID

Affiliation:

1. Dermatology Hospital, Southern Medical University , Guangzhou , China

2. Department of Dermatology, Peking University First Hospital, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, National Clinical Research Center for Skin and Immune Diseases , Beijing , China

3. Department of Dermatology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health , Beijing , China

4. Department of Dermatology, The First Affiliated Hospital of Xiamen University , Xiamen , China

Abstract

Abstract Background Inherited hyperpigmented skin disorders comprise a group of entities with considerable clinical and genetic heterogenicity. The genetic basis of a majority of these disorders remains to be elucidated. Objectives This study aimed to identify the underlying gene for an unclarified disorder of autosomal-dominant generalized skin hyperpigmentation with or without glomuvenous malformation. Methods Whole-exome sequencing was performed in five unrelated families with autosomal-dominant generalized skin hyperpigmentation. Variants were confirmed using Sanger sequencing and a minigene assay was employed to evaluate the splicing alteration. Immunofluorescence and transmission electron microscopy (TEM) were used to determine the quantity of melanocytes and melanosomes in hyperpigmented skin lesions. GLMN knockdown by small interfering RNA assays was performed in human MNT-1 cells to examine melanin concentration and the underlying molecular mechanism. Results We identified five variants in GLMN in five unrelated families, including c.995_996insAACA(p.Ser333Thrfs*11), c.632 + 4delA, c.1470_1473dup(p.Thr492fs*12), c.1319G > A(p.Trp440*) and c.1613_1614insTA(Thr540*). The minigene assay confirmed that the c.632 + 4delA mutant resulted in abolishment of the canonical donor splice site. Although the number of melanocytes remained unchanged in skin lesions, as demonstrated by immunofluorescent staining of tyrosinase and premelanosome protein, TEM revealed an increased number of melanosomes in the skin lesion of a patient. The GLMN knockdown MNT-1 cells demonstrated a higher melanin concentration, a higher proportion of stage III and IV melanosomes, upregulation of microphthalmia-associated transcription factor and tyrosinase, and downregulation of phosphorylated p70S6 K vs. mock-transfected cells. Conclusions We found that loss-of-function variants in GLMN are associated with generalized skin hyperpigmentation with or without glomuvenous malformation. Our study implicates a potential role of glomulin in human skin melanogenesis, in addition to vascular morphogenesis.

Funder

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3