A survey of the genes encoding trehalose-metabolism enzymes in crustaceans

Author:

Huang Yuting1ORCID,Shi Qiong2

Affiliation:

1. College of Life Sciences, University of Chinese Academy of Sciences , Beijing, 100049 , China

2. Shenzhen Key Lab of Marine Genomics, BGI Academy of Marine Sciences, BGI Marine , BGI, Shenzhen, 518081 , China

Abstract

Abstract Trehalose is important in activity, development, and environmental-stress response, especially in invertebrates. It is mainly synthesized by trehalose-6-phosphate synthase (TPS) and trehalose-6-phosphate phosphatase (TPP), and degraded by trehalase (TRE). In the present study, the tps, tpp, and tre were identified from various crustacean species and their phylogeny, structure, network, and transcriptome were analyzed. The tps and tpp are fused in crustaceans, accompanied with multi-copies of genes to improve the synthesis capacity of trehalose, and they may be formed by whole-genome duplication (WGD) and/or segmental duplications. Phylogenetic subgroups of enzymes in the same species may be due to the different lengths and distribution positions of domains. The protein with single TPP domain in the salmon louse, the copepod Lepeophtheirus salmonis (Krøyer, 1837), probably has a depoisoning effect. Structure analyses and location predictions showed that crustacean TRE possess an α-helix-rich structure with barrel core, and are membrane-bound, cytoplasmic, and secreted. Additionally, the non-acid TRE might not be adjusted by Ca2+ because there is no binding domain in crustaceans. Expression profiles of different tissues, developmental periods, and environmental-challenge responses, as well as genes of co-expression networks suggested that TPS (including TPP) and TRE might play important roles in physiological activities including development and environmental adaptation in crustaceans. Multi-copies of tre may enhance survival ability of copepods in diverse and sometimes harsh environments. Branchiopods, copepods, and the marine shrimp Penaeus vannamei Boone, 1931 are suspected to adopt possible acid TRE as a supplementary strategy in response to stress.

Publisher

Oxford University Press (OUP)

Subject

Aquatic Science

Reference87 articles.

1. Insights on the evolution of trehalose biosynthesis;Avonce;BMC Evolutionary Biology,2006

2. Gene fusion.;Betrán,2006

3. GeneWise and genomewise;Birney;Genome Research,2004

4. Carbohydrate metabolism.;Blackstock,2014

5. Multienzyme systems obtained by gene fusion;Bülow;Trends in Biotechnology,1991

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3