Use of the shuttle box system to determine the effects of hypoxia and food deprivation on the behavioral responses of the rock crab Cancer irroratus Say, 1817 (Decapoda: Brachyura: Cancridae)

Author:

Jiang Qiwu1ORCID,McGaw Iain J1

Affiliation:

1. Department of Ocean Sciences, Memorial University , St. John’s, NL , Canada A1C 5S7

Abstract

Abstract Food-deprivation state (fed, fasted, starved) affected rock crabs physiological and biochemical responses to hypoxia in Cancer irroratus. Fasted and starved crabs were better adapted to deal with hypoxia than fed animals; however, avoidance behavior is usually considered as the first defense to environmental stressors for decapod crustaceans. We examined the effects of food deprivation on the crab’s behavior to hypoxia using the Loligo® shuttle box system, an automated system with a pair of connected water chambers with regulated flow and oxygen level. Crabs (starved, fasted and fed) that were offered a choice of two different oxygen saturations did not appear to actively avoid the hypoxia regimes tested (50% and 20% oxygen saturation). We used novel algorithms to analyze the data and found that crabs altered rheotaxis (movement towards or away from a current of water) and corresponding moving speed as a function of oxygen saturation. The food-deprivation state did influence thigmotaxis (contact with walls/objects when exploring an open space): starved crabs became bolder and more likely to explore open areas of the apparatus. Technological advancements such as the fully automated shuttle box have improved our ability to collect and analyze behavioral data; however, our study also highlighted some of the potential problems of relying solely on such apparatus to study the behavior of benthic crustaceans.

Funder

Natural Sciences and Engineering Council Discovery

Mitacs Accelerate

China Scholarship Council

Publisher

Oxford University Press (OUP)

Subject

Aquatic Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3