Epigenetic Mutation in a Tubulin-Folding Cofactor B (ZmTFCB) Gene Arrests Kernel Development in Maize

Author:

Guo Yingmei1,Chen Yan23,Zhang Jie1,Li Jiankun2,Fan Kaijian2,Chen Rongrong2,Liu Yunjun2ORCID,Zheng Jun2ORCID,Fu Junjie2,Gu Riliang1ORCID,Wang Guoying2,Cui Yu21,Du Xuemei1ORCID,Wang Jianhua1

Affiliation:

1. Beijing Innovation Center for Crop Seed Technology, Ministry of Agriculture and Rural Affairs, College of Agronomy and Biotechnology, China Agricultural University , Beijing 100193, China

2. Institute of Crop Science, Chinese Academy of Agricultural Sciences , Beijing 100081, China

3. Hainan Yazhou Bay Seed Laboratory , Sanya 572025, China

Abstract

Abstract Epialleles, the heritable epigenetic variants that are not caused by changes in DNA sequences, can broaden genetic and phenotypic diversity and benefit to crop breeding, but very few epialleles related to agricultural traits have been identified in maize. Here, we cloned a small kernel mutant, smk-wl10, from maize, which encoded a tubulin-folding cofactor B (ZmTFCB) protein. Expression of the ZmTFCB gene decreased in the smk-wl10 mutant, which arrested embryo, endosperm and basal endosperm transfer layer developments. Overexpression of ZmTFCB could complement the defective phenotype of smk-wl10. No nucleotide sequence variation in ZmTFCB could be found between smk-wl10 and wild type (WT). Instead, we detected hypermethylation of nucleotide CHG (where H is A, C or T nucleotide) sequence contexts and increased level of histone H3K9me2 methylation in the upstream sequence of ZmTFCB in smk-wl10 compared with WT, which might respond to the attenuating transcription of ZmTFCB. In addition, yeast two-hybrid and bimolecular fluorescence complementation assays identified a strong interaction between ZmTFCB and its homolog ZmTFCE. Thus, our work identifies a novel epiallele of the maize ZmTFCB gene, which might represent a common phenomenon in the epigenetic regulation of important traits such as kernel development in maize.

Funder

Hainan Yazhou bay seed laboratory

the Sichuan international science and technology innovation cooperation project

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Plant Science,Physiology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3