Exploiting Genomic Features to Improve the Prediction of Transcription Factor-Binding Sites in Plants

Author:

Rivière Quentin1,Corso Massimiliano12,Ciortan Madalina3,Noël Grégoire4,Verbruggen Nathalie1ORCID,Defrance Matthieu3ORCID

Affiliation:

1. Brussels Bioengineering School, Laboratory of Plant Physiology and molecular Genetics, Université Libre de Bruxelles , Brussels 1050, Belgium

2. INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Université Paris-Saclay , Versailles 78000, France

3. Interuniversity Institute of Bioinformatics in Brussels, Machine Learning Group, Université Libre de Bruxelles , Brussels 1050, Belgium

4. Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liège , Passage des Déportés 2, Gembloux 5030, Belgium

Abstract

Abstract The identification of transcription factor (TF) target genes is central in biology. A popular approach is based on the location by pattern matching of potential cis-regulatory elements (CREs). During the last few years, tools integrating next-generation sequencing data have been developed to improve the performance of pattern matching. However, such tools have not yet been comprehensively evaluated in plants. Hence, we developed a new streamlined method aiming at predicting CREs and target genes of plant TFs in specific organs or conditions. Our approach implements a supervised machine learning strategy, which allows decision rule models to be learnt using TF ChIP-chip/seq experimental data. Different layers of genomic features were integrated in predictive models: the position on the gene, the DNA sequence conservation, the chromatin state and various CRE footprints. Among the tested features, the chromatin features were crucial for improving the accuracy of the method. Furthermore, we evaluated the transferability of predictive models across TFs, organs and species. Finally, we validated our method by correctly inferring the target genes of key TFs controlling metabolite biosynthesis at the organ level in Arabidopsis. We developed a tool—Wimtrap—to reproduce our approach in plant species and conditions/organs for which ChIP-chip/seq data are available. Wimtrap is a user-friendly R package that supports an R Shiny web interface and is provided with pre-built models that can be used to quickly get predictions of CREs and TF gene targets in different organs or conditions in Arabidopsis thaliana, Solanum lycopersicum, Oryza sativa and Zea mays.

Funder

Fonds De La Recherche Scientifique - FNRS

Fonds pour la Formation à la Recherche dans l’Industrie et dans l’Agriculture

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Plant Science,Physiology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3