The Importance of the C-Terminal Cys Pair of Phosphoribulokinase in Phototrophs in Thioredoxin-Dependent Regulation

Author:

Fukui Kazuha1,Yoshida Keisuke12ORCID,Yokochi Yuichi1,Sekiguchi Takatoshi1,Wakabayashi Ken-ichi12,Hisabori Toru12ORCID,Mihara Shoko2

Affiliation:

1. School of Life Science and Technology, Tokyo Institute of Technology , Nagatsuta-cho 4259, Midori-ku, Yokohama 226-8503, Japan

2. Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology , Nagatsuta-cho 4259, Midori-ku, Yokohama 226-8503, Japan

Abstract

Abstract Phosphoribulokinase (PRK), one of the enzymes in the Calvin–Benson cycle, is a well-known target of thioredoxin (Trx), which regulates various enzyme activities by the reduction of disulfide bonds in a light-dependent manner. PRK has two Cys pairs conserved in the N-terminal and C-terminal regions, and the N-terminal one near the active site is thought to be responsible for the regulation. The flexible clamp loop located between the N-terminal two Cys residues has been deemed significant to Trx-mediated regulation. However, cyanobacterial PRK is also subject to Trx-dependent activation despite the lack of this clamp loop. We, therefore, compared Trx-mediated regulation of PRK from the cyanobacterium Anabaena sp. PCC 7120 (A.7120_PRK) and that from the land plant Arabidopsis thaliana (AtPRK). Interestingly, peptide mapping and site-directed mutagenesis analysis showed that Trx was more effective in changing the redox states of the C-terminal Cys pair in both A.7120_PRK and AtPRK. In addition, the effect of redox state change of the C-terminal Cys pair on PRK activity was different between A.7120_PRK and AtPRK. Trx-mediated redox regulation of the C-terminal Cys pair was also important for complex dissociation/formation with CP12 and glyceraldehyde 3-phosphate dehydrogenase. Furthermore, in vivo analysis of the redox states of PRK showed that only one disulfide bond is reduced in response to light. Based on the enzyme activity assay and the complex formation analysis, we concluded that Trx-mediated regulation of the C-terminal Cys pair of PRK is important for activity regulation in cyanobacteria and complex dissociation/formation in both organisms.

Funder

Japan Society for the Promotion of Science

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Plant Science,Physiology,General Medicine

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3