Dual Redox Regulation of the DNA-Binding Activity of the Response Regulator RpaB in the Cyanobacterium Synechocystis sp. PCC 6803

Author:

Kato Naoki1,Iwata Kazuki1,Kadowaki Taro1,Sonoike Kintake2,Hihara Yukako1ORCID

Affiliation:

1. Graduate School of Science and Engineering, Saitama University , 255 Shimo-Okubo, Saitama, 338-8570 Japan

2. Faculty of Education and Integrated Arts and Sciences, Waseda University , 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480 Japan

Abstract

Abstract The response regulator RpaB plays a central role in transcriptional regulation of photosynthesis-related genes in cyanobacteria. RpaB is phosphorylated by its cognate histidine kinase Hik33 and functions as both an activator and a repressor under low-light conditions, whereas its phosphorylation level and DNA-binding activity promptly decrease upon the upshift of photon flux density, causing changes in the gene expression profile. In this study, we assessed the possibility of redox regulation of the DNA-binding activity of RpaB in Synechocystis sp. PCC 6803 by the addition of inhibitors of photosynthetic electron transport, 3-(3,4-dichlorophenyl)-1,1-dimethylurea and 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone, or the reducing agent dithiothreitol under different photon flux densities. Analysis of the phosphorylation level of RpaB revealed that reduction of QA and increase in the availability of reducing equivalents at the acceptor side of photosystem I (PSI) can independently trigger dephosphorylation. The redox-state-dependent regulation by an unidentified thiol other than Cys59 of RpaB is prerequisite for the phosphorylation-dependent regulation of the DNA-binding activity. Environmental signals, recognized by Hik33, and metabolic signals recognized as the availability of reducing equivalents, must be integrated at the master regulator RpaB, in order to attain the flexible regulation of acclimatory responses.

Funder

Cooperative Research Program of "Network Joint Research Center for Materials and Devices

Japan Society for the Promotion of Science

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Plant Science,Physiology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3