Photosynthetic-Product–Dependent Activation of Plasma Membrane H+-ATPase and Nitrate Uptake inArabidopsisLeaves

Author:

Kinoshita Satoru N1,Suzuki Takamasa2,Kiba Takatoshi3ORCID,Sakakibara Hitoshi3ORCID,Kinoshita Toshinori14ORCID

Affiliation:

1. Graduate School of Science, Nagoya University , Chikusa, Nagoya, 464-8602 Japan

2. Department of Biological Chemistry, College of Bioscience and Biotechnology, Chubu University , Kasugai, 487-8501 Japan

3. Graduate School of Bioagricultural Sciences, Nagoya University , Nagoya, 464-8602 Japan

4. Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University , Chikusa, Nagoya, 464-8602 Japan

Abstract

AbstractPlasma membrane (PM) proton-translocating adenosine triphosphatase (H+-ATPase) is a pivotal enzyme for plant growth and development that acts as a primary transporter and is activated by phosphorylation of the penultimate residue, threonine, at the C-terminus. Small Auxin-Up RNA family proteins maintain the phosphorylation level via inhibiting dephosphorylation of the residue by protein phosphatase 2C-D clade. Photosynthetically active radiation activates PM H+-ATPase via phosphorylation in mesophyll cells of Arabidopsis thaliana, and phosphorylation of PM H+-ATPase depends on photosynthesis and photosynthesis-related sugar supplementation, such as sucrose, fructose and glucose. However, the molecular mechanism and physiological role of photosynthesis-dependent PM H+-ATPase activation are still unknown. Analysis using sugar analogs, such as palatinose, turanose and 2-deoxy glucose, revealed that sucrose metabolites and products of glycolysis such as pyruvate induce phosphorylation of PM H+-ATPase. Transcriptome analysis showed that the novel isoform of the Small Auxin-Up RNA genes, SAUR30, is upregulated in a light- and sucrose-dependent manner. Time-course analyses of sucrose supplementation showed that the phosphorylation level of PM H+-ATPase increased within 10 min, but the expression level of SAUR30 increased later than 10 min. The results suggest that two temporal regulations may participate in the regulation of PM H+-ATPase. Interestingly, a 15NO3− uptake assay in leaves showed that light increases 15NO3− uptake and that increment of 15NO3− uptake depends on PM H+-ATPase activity. The results opened the possibility of the physiological role of photosynthesis-dependent PM H+-ATPase activation in the uptake of NO3−. We speculate that PM H+-ATPase may connect photosynthesis and nitrogen metabolism in leaves.

Funder

Japan Society for the Promotion of Science

MEXT

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Plant Science,Physiology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3