A. thaliana Hybrids Develop Growth Abnormalities through Integration of Stress, Hormone and Growth Signaling

Author:

Sageman-Furnas Katelyn1,Nurmi Markus1,Contag Meike1,Plötner Björn1,Alseekh Saleh12ORCID,Wiszniewski Andrew1,Fernie Alisdair R1ORCID,Smith Lisa M3ORCID,Laitinen Roosa A E14ORCID

Affiliation:

1. Max Planck Institute of Molecular Plant Physiology , Am Mühlenberg 1, Potsdam-Golm 14476, Germany

2. Center of Plant Systems Biology and Biotechnology , Plovdiv 4000, Bulgaria

3. School of Biosciences and Institute for Sustainable Food, University of Sheffield , Western Bank, Sheffield S10 2TN, UK

4. Organismal and Evolutionary Research Programme, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki , Helsinki 00014, Finland

Abstract

Abstract Hybrids between Arabidopsis thaliana accessions are important in revealing the consequences of epistatic interactions in plants. F1 hybrids between the A. thaliana accessions displaying either defense or developmental phenotypes have been revealing the roles of the underlying epistatic genes. The interaction of two naturally occurring alleles of the OUTGROWTH-ASSOCIATED KINASE (OAK) gene in Sha and Lag2-2, previously shown to cause a similar phenotype in a different allelic combination in A. thaliana, was required for the hybrid phenotype. Outgrowth formation in the hybrids was associated with reduced levels of salicylic acid, jasmonic acid and abscisic acid in petioles and the application of these hormones mitigated the formation of the outgrowths. Moreover, different abiotic stresses were found to mitigate the outgrowth phenotype. The involvement of stress and hormone signaling in outgrowth formation was supported by a global transcriptome analysis, which additionally revealed that TCP1, a transcription factor known to regulate leaf growth and symmetry, was downregulated in the outgrowth tissue. These results demonstrate that a combination of natural alleles of OAK regulates growth and development through the integration of hormone and stress signals and highlight the importance of natural variation as a resource to discover the function of gene variants that are not present in the most studied accessions of A. thaliana.

Funder

The Leverhulme Trust

European Union’s Horizon 2020 research

Max-Planck-Gesellschaft

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Plant Science,Physiology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3