Function of Rice High-Affinity Potassium Transporters in Pollen Development and Fertility

Author:

Li Weihong123,Li Mengqi1,Li Shen1,Zhang Yanfan1,Li Xin1,Xu Guohua12ORCID,Yu Ling12ORCID

Affiliation:

1. State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University , Nanjing 210095, China

2. China MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, College of Resources and Environmental Science, Nanjing Agricultural University , Nanjing 210095, China

3. Jiangsu Academy of Agricultural Sciences, Huaiyin Institute of Agricultural Sciences of Xuhuai Region in Jiangsu , Huaian, Jiangsu 223001, China

Abstract

Abstract Plant High-affinity K+ transporters/K+ uptake permeases/K+ transporters (HAK/KUP/KT) transporters have been predicted as membrane H+-K+ symporters in facilitating K+ uptake and distribution, while their role in seed production remains to be elucidated. In this study, we report that OsHAK26 is preferentially expressed in anthers and seed husks and located in the Golgi apparatus. Knockout of either OsHAK26 or plasma membrane located H+-K+ symporter gene OsHAK1 or OsHAK5 in both Nipponbare and Dongjin cultivars caused distorted anthers, reduced number and germination rate of pollen grains. Seed-setting rate assay by reciprocal cross-pollination between the mutants of oshak26, oshak1, oshak5 and their wild types confirmed that each HAK transporter is foremost for pollen viability, seed-setting and grain yield. Intriguingly, the pollens of oshak26 showed much thinner wall and were more vulnerable to desiccation than those of oshak1 or oshak5. In vitro assay revealed that the pollen germination rate of oshak5 was dramatically affected by external K+ concentration. The results suggest that the role of OsHAK26 in maintaining pollen development and fertility may relate to its proper cargo sorting for construction of pollen walls, while the role of OsHAK1 and OsHAK5 in maintaining seed production likely relates to their transcellular K+ transport activity.

Funder

National Key Research and Development Program of China

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Plant Science,Physiology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3