SHOC2 plays an oncogenic or tumor-suppressive role by differentially targeting the MAPK and mTORC1 signals in liver cancer

Author:

You Xiahong12,Dou Longyu12,Tan Mingjia3,Xiong Xiufang12,Sun Yi1245ORCID

Affiliation:

1. Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education) of the Second Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine , Hangzhou 310029 , China

2. Cancer Center of Zhejiang University , Hangzhou 310029 , China

3. Department of Radiation Oncology, University of Michigan , Ann Arbor MI 48109 , United States

4. Zhejiang Provincial Clinical Research Center for CANCER , Hangzhou 310029 , China

5. Research Center for Life Science and Human Health, Binjiang Institute of Zhejiang University , Hangzhou 310053 , China

Abstract

Abstract SHOC2 is a scaffold protein that activates the RAS-MAPK signal. Our recent study showed that SHOC2 is also a negative regulator of the mTORC1 signal in lung cancer cells. Whether and how SHOC2 differentially regulates the RAS-MAPK vs. the mTORC1 signals in liver cancer remains unknown. Here, we showed that SHOC2 is overexpressed in human liver cancer tissues, and SHOC2 overexpression promotes the growth and survival of liver cancer cells via activation of the RAS-MAPK signal, although the mTORC1 signal is inactivated. SHOC2 knockdown suppresses the growth of liver cancer cells mainly through inactivating the RAS-MAPK signal. Thus, in the cell culture models, SHOC2 regulation of growth is dependent of the RAS-MAPK but not the mTORC1 signal. Interestingly, in a mouse liver cancer model induced by diethylnitrosamine (DEN)-high-fat diet (HFD), hepatocyte-specific Shoc2 deletion inactivates the Ras-Mapk signal but has no effect in liver tumorigenesis. However, in the Pten loss-induced liver cancer model, Shoc2 deletion further activates mTorc1 without affecting the Ras-Mapk signal and promotes liver tumorigenesis. Collectively, it appears that SHOC2 could act as either an oncogene (via activating the MAPK signal) or a tumor suppressor (via inactivating the mTORC1 signal) in the manner dependent of the dominancy of the MAPK vs. mTORC1 signals.

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3