Tracking the trends of karyotype differentiation in the phylogenetic context of Gint, a scorpion genus endemic to the Horn of Africa (Scorpiones: Buthidae)

Author:

Just Pavel1,Šťáhlavský František1,Kovařík František1,Štundlová Jana12

Affiliation:

1. Department of Zoology, Faculty of Science, Charles University , Viničná, Prague , Czech Republic

2. Faculty of Science, University of South Bohemia in České Budějovice, Branišovská, České Budějovice , Czech Republic

Abstract

Abstract To determine the mechanisms of karyotype differentiation in scorpions of the genus Gint, we employed an integrative approach, combining cytogenetic data and sequence-based phylogeny. We cytogenetically examined six species with emphasis on multivalent meiotic configurations, 18S rDNA and (TTAGG)n distribution and compared chromosomal data with genetic divergence based on analysis of 16S rRNA and COI gene markers. Our results show that Gint species exhibit substantial karyotype diversity (2n = 18–45) and a high incidence of chromosome heterozygosity. Meiotic chromosome chains formed by up to six elements were found in 85% of analysed individuals, causing intraspecific chromosome variation in three species. Fluorescence in situ hybridization revealed that the 18S rDNA distribution pattern differed in Gint species, including at the intrapopulation level, but the chromosomal localization of (TTAGG)n motif was stable across species. Conspicuous interspecific differences in chromosome counts broadly corresponded with genetic divergence among Gint species. Our findings indicate that Gint karyotypes have undergone dynamic reorganization through independent fusions, fissions and reciprocal translocations. Owing to present chromosomal polymorphism, such structural changes shaping the genome architecture appear to be still ongoing in the populations of some Gint species.

Publisher

Oxford University Press (OUP)

Subject

Animal Science and Zoology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3