Tracking parallel adaptation of shell morphology through geological times in the land snail genus Pupilla (Gastropoda: Stylommatophora: Pupillidae)

Author:

Haase Martin1ORCID,Meng Stefan2,Horsák Michal3

Affiliation:

1. AG Vogelwarte, Zoological Institute and Museum, University of Greifswald, Greifswald, Germany

2. Institute of Geography and Geology, University of Greifswald, Greifswald, Germany

3. Department of Botany and Zoology, Masaryk University, Brno, Czech Republic

Abstract

Abstract Changing environmental conditions force species either to disperse or to adapt locally either genetically or via phenotypic plasticity. Although limits of plasticity can be experimentally tested, the predictability of genetic adaptation is restricted due to its stochastic nature. Nevertheless, our understanding of evolutionary adaptation has been improving in particular through studies of parallel adaptation. Based on molecular phylogenetic inferences and morphological investigations of both recent and fossil shells we tracked the morphological changes in three land snails, Pupilla alpicola, Pupilla loessica and Pupilla muscorum. These species differ in habitat requirements as well as historical and extant distributions with P. alpicola and P. loessica being more similar to each other than to P. muscorum. Therefore, we hypothesized, that the three species reacted independently and individually to the conditions changing throughout the Pleistocene, but expected that changes within P. alpicola and P. loessica would be more similar compared to P. muscorum. Indeed, intraspecific shell shape differences across time were similar in P. alpicola and P. loessica, suggesting that similar niche shifts have led to similar transformations in parallel. In contrast, extant P. muscorum populations were practically identical in shape to their ancestors. They have probably tracked their ecological niches through time.

Funder

German Academic Exchange Service London

University of Greifswald

Czech Science Foundation

Publisher

Oxford University Press (OUP)

Subject

Animal Science and Zoology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3