Phylogeny, taxonomic reassessment and ‘ecomorph’ relationship of the Orientallactaga sibirica complex (Rodentia: Dipodidae: Allactaginae)

Author:

Cheng Jilong1ORCID,Xia Lin1,Feijó Anderson1ORCID,Shenbrot Georgy I2,Wen Zhixin1,Ge Deyan1ORCID,Lu Liang3,Yang Qisen1

Affiliation:

1. Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing, China

2. Mitrani Department of Desert Ecology, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel

3. State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Centre for Disease Control and Prevention, Changping District, Beijing, China

Abstract

Abstract The ecological gradient–morphological variation (‘ecomorph’) relationship has long interested ecologists and evolutionary biologists, but it is applied far less frequently than genetic differentiation in cryptic species detection and species identification. With integrative methods, we revise taxonomic uncertainties in the Orientallactaga sibirica complex (OSC), with 298 sequence specimens and 469 voucher specimens from 138 localities covering nearly the entire distribution of the OSC. Phylogenetic relationships are assessed by Bayesian inference and maximum likelihood using two mitochondrial and nine nuclear genes. We use species-delimitation approaches to divide and validate the ‘candidate species’. We evaluate correlations between ecological divergence and phylogenetic splits, and visualize geographical patterns of morphological variation. The OSC is divided into four phylogenetic groups, the Ognevi, Altay, Bogda and Sibirica groups, and the OSC exhibits a significant ecomorph relationship and ecological divergence pattern. Morphological variations not only follow the general regularity under a large gradient of ecological factors, but are also closely related to the local environment/habitat. We suggest considering the comprehensive ecomorph relationship to identify species. Molecular analyses reveal that the OSC more easily forms deeply divergent lineages in the foothills and this differentiation depth may be related to mountain system size.

Funder

National Natural Science Foundation of China

Second Tibetan Plateau Scientific Expedition and Research Program

Key Laboratory of Zoological Systematics

Evolution of the Chinese Academy of Sciences

Publisher

Oxford University Press (OUP)

Subject

Animal Science and Zoology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3