Parallel evolution of toepads in rock-dwelling lineages of a terrestrial gecko (Gekkota: Gekkonidae: Heteronotia binoei)

Author:

Riedel Jendrian1ORCID,Zozaya Stephen M1,Hoskin Conrad J1ORCID,Schwarzkopf Lin1ORCID

Affiliation:

1. College of Science and Engineering, James Cook University, Townsville, Queensland, Australia

Abstract

Abstract Selection for effective locomotion can lead to specialized morphological structures. Adhesive toepads, which have arisen independently in different lizard clades, facilitate the use of vertical and inverted substrates. Their evolution is poorly understood because functionally intermediate morphological configurations between padless and pad-bearing forms are rare. To shed light on toepad evolution, we assessed the subdigital morphology of phylogenetically distinct lineages of the Bynoe’s gecko species complex (Heteronotia binoei). Most populations of H. binoei are terrestrial, but two relatively distantly related saxicoline (rock-dwelling) lineages have enlarged terminal subdigital scales resembling toepads. We reconstructed the ancestral terminal subdigital scale size of nine lineages of H. binoei in eastern Australia, including these two saxicoline lineages. Additionally, we compared the subdigital microstructures of four lineages: the two saxicoline lineages and their respective terrestrial sister-lineages. Surprisingly, all four lineages had fully developed setae, but the setae of the two saxicoline lineages were significantly longer, branched more often and were more widely spaced than the terrestrial sister-lineages. We conclude that the saxicoline lineages represent examples of parallel evolution of enlarged adhesive structures in response to vertical substrate use, and their morphology represents a useful model as an intermediate state in toepad evolution.

Publisher

Oxford University Press (OUP)

Subject

Animal Science and Zoology,Ecology, Evolution, Behavior and Systematics

Reference126 articles.

1. From micro to nano contacts in biological attachment devices;Arzt;Proceedings of the National Academy of Sciences of the USA,2003

2. Properties, principles, and parameters of the gecko adhesive system;Autumn,2006

3. Gecko adhesion: structure, function, and applications;Autumn;MRS Bulletin,2007

4. Mechanisms of adhesion in geckos;Autumn;Integrative and Comparative Biology,2002

5. Evidence for Van der Waals adhesion in gecko setae;Autumn;Proceedings of the National Academy of Sciences of the USA,2002

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3