Why the long face? Static allometry in the sexually dimorphic phenotypes of Neotropical electric fishes

Author:

Evans Kory M1,Bernt Maxwell J2,Kolmann Matthew A3,Ford Kassandra L2,Albert James S2

Affiliation:

1. University of Minnesota, Department of Fisheries, Wildlife, and Conservation Biology, & Bell Museum of Natural History, St Paul, MN, USA

2. University of Louisiana at Lafayette, Department of Biology, Lafayette, LA, USA

3. George Washington University, Washington, DC, USA

Abstract

Abstract The evolution of sexually dimorphic traits is thought to have marked effects on underlying patterns of static allometry. These traits can negatively affect organismal survivability by creating trade-offs between trait size and performance. Here we use three-dimensional geometric morphometrics to study the static allometry of two species of sexually dimorphic electric fishes (Apteronotus rostratus and Compsaraia samueli) in which mature males grow elongate jaws used in agonistic male–male interactions. We also estimate jaw-closing performance between the sexes of both species to track changes in kinematic transmission associated with the development of sexual weaponry. We find significantly different patterns of static allometry between the sexes of both species, with males exhibiting more positive allometric slopes relative to females. We also find a negative relationship between skull shape and mandibular kinematic transmission in C. samueli, suggesting a trade-off where males with longer faces exhibit lower mechanical advantages, suggesting weaker jaw leverage. In contrast, males and females of A. rostratus exhibit no difference between sexes in mechanical advantage associated with facial elongation.

Funder

National Science Foundation

Publisher

Oxford University Press (OUP)

Subject

Animal Science and Zoology,Ecology, Evolution, Behavior and Systematics

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3