Will Earth's next supercontinent assemble through the closure of the Pacific Ocean?

Author:

Huang Chuan12,Li Zheng-Xiang1ORCID,Zhang Nan12

Affiliation:

1. Earth Dynamics Research Group, The Institute for Geoscience Research (TIGeR), School of Earth and Planetary Sciences, Curtin University , Perth 6845 , Australia

2. Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University , Beijing 100871 , China

Abstract

Abstract Earth's known supercontinents are believed to have formed in vastly different ways, with two endmembers being introversion and extroversion. The former involves the closure of the internal oceans formed during the break-up of the previous supercontinent, whereas the latter involves the closure of the previous external superocean. However, it is unclear what caused such diverging behavior of supercontinent cycles that involved first-order interaction between subducting tectonic plates and the mantle. Here we address this question through 4D geodynamic modeling using realistic tectonic set-ups. Our results show that the strength of the oceanic lithosphere plays a critical role in determining the assembly path of a supercontinent. We found that high oceanic lithospheric strength leads to introversion assembly, whereas lower strength leads to extroversion assembly. A theoretically estimated reduction in oceanic crustal thickness, and thus its strength, during Earth's secular cooling indicates that introversion was only possible for the Precambrian time when the oceanic lithosphere was stronger, thus predicting the assembling of the next supercontinent Amasia through the closure of the Pacific Ocean instead of the Indian-Atlantic oceans. Our work provides a new understanding of the secular evolution of plate tectonics and geodynamics as the Earth cooled.

Funder

Government of Western Australia

Publisher

Oxford University Press (OUP)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3