Achromatic metasurfaces by dispersion customization for ultra-broadband acoustic beam engineering

Author:

Dong Hao-Wen,Shen Chen,Zhao Sheng-Dong,Qiu Weibao,Zheng HairongORCID,Zhang Chuanzeng,Cummer Steven A1,Wang Yue-Sheng,Fang Daining,Cheng LiORCID

Affiliation:

1. Department of Electrical and Computer Engineering, Duke University , Durham , NC 27708 , USA

Abstract

Abstract Metasurfaces, the ultra-thin media with extraordinary wavefront modulation ability, have shown great promise for many potential applications. However, most of the existing metasurfaces are limited by narrow-band and strong dispersive modulation, which complicates their real-world applications and, therefore require strict customized dispersion. To address this issue, we report a general methodology for generating ultra-broadband achromatic metasurfaces with prescribed ultra-broadband achromatic properties in a bottom-up inverse-design paradigm. We demonstrate three ultra-broadband functionalities, including acoustic beam deflection, focusing and levitation, with relative bandwidths of 93.3%, 120% and 118.9%, respectively. In addition, we reveal a relationship between broadband achromatic functionality and element dispersion. All metasurface elements have anisotropic and asymmetric geometries with multiple scatterers and local cavities that synthetically support internal resonances, bi-anisotropy and multiple scattering for ultra-broadband customized dispersion. Our study opens new horizons for ultra-broadband highly efficient achromatic functional devices, with promising extension to optical and elastic metamaterials.

Funder

National Natural Science Foundation of China

Research Grants Council of Hong Kong Special Administrative Region

Beijing Institute of Technology Research Fund Program for Young Scholars

Hong Kong Scholars Program

Postdoctoral Science Foundation

Sino-German Joint Research Program

German Research Foundation

National Science Foundation

Shenzhen Key Laboratory of Ultrasound Imaging and Therapy

Publisher

Oxford University Press (OUP)

Subject

Multidisciplinary

Cited by 68 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3