Affiliation:
1. Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University , Tianjin 300071 , China
Abstract
Abstract
Rechargeable aqueous Zn batteries are considered as promising energy-storage devices because of their high capacity, environmental friendliness and low cost. However, the hydrogen evolution reaction and growth of dendritic Zn in common aqueous electrolytes severely restrict the application of Zn batteries. Here, we develop a simple strategy to suppress side reactions and boost the reversibility of the Zn electrode. By introducing 30% (volume fractions) N,N-dimethylformamide (DMF) to the 2 M Zn(CF3SO3)2–H2O electrolyte (ZHD30), the preferential hydrogen-bonding effect between DMF and H2O effectively reduces the water activity and hinders deprotonation of the electrolyte. The ZHD30 electrolyte improves the Zn plating/stripping coulombic efficiency from ∼95.3% to ∼99.4% and enhances the cycles from 65 to 300. The Zn–polyaniline full battery employing the ZHD30 electrolyte can operate over a wide temperature range from –40°C to +25°C and deliver capacities of 161.6, 127.4 and 65.8 mAh g–1 at 25, –20 and –40°C, respectively. This work provides insights into the role of tuning solvent effects in designing low-cost and effective aqueous electrolytes.
Funder
International Programs of the US Forest Service
National Natural Science Foundation of China
Publisher
Oxford University Press (OUP)
Cited by
75 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献