New progress in zeolite synthesis and catalysis

Author:

Xu Hao1,Wu Peng1ORCID

Affiliation:

1. Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University , Shanghai 200062 , China

Abstract

Abstract The rational design synthesis of zeolite catalysts with effective, environmentally benign and atom-economic routes is a major topic in the field of microporous materials, as it would avoid the high labor cost and inefficiency of traditional trial-and-error methods in developing new structures and dispel environmental concerns regarding the industrial mass production of zeolites. Catalytic applications of zeolite materials have expanded from conventional single functionalities, such as solid acids or selective oxidation catalysts to bi/multifunctionalities through combination with metals or metal oxides. This is a response to new requirements from petrochemical and fine chemical industries, such as precise control of product distribution, conversion of low-carbon resources for chemical production, and solutions to increasingly severe environmental problems related to CO2 and NOx. Thus, based on the systematic knowledge of zeolite chemistry and science that researchers have acquired in the past half-century and the development requirements, remarkable progress has been made in zeolite synthesis and catalysis in the past 10 years. This includes the manipulation of zeolitic monolayers derived from layered zeolites and germanosilicates to construct novel zeolite materials and effective and green zeolite syntheses as well as the synergistic interaction of zeolites and metal/metal oxides with different space distributions in the conversion of low-carbon resources. With many zeolite catalysts and catalytic processes being developed, our understanding of the close relationship between zeolite synthesis, structure and catalytic properties has deepened. Researchers are gradually approaching the goal of rationally designing zeolite catalysts with precisely controlled activity and selectivity for particular applications.

Funder

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3