Emerging analytical methods to characterize zeolite-based materials

Author:

van Vreeswijk Sophie H1,Weckhuysen Bert M1

Affiliation:

1. Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials, Utrecht University , Utrecht 3584 CG, The Netherlands

Abstract

Abstract Zeolites and zeolitic materials are, through their use in numerous conventional and sustainable applications, very important to our daily lives, including to foster the necessary transition to a more circular society. The characterization of zeolite-based materials has a tremendous history and a great number of applications and properties of these materials have been discovered in the past decades. This review focuses on recently developed novel as well as more conventional techniques applied with the aim of better understanding zeolite-based materials. Recently explored analytical methods, e.g. atom probe tomography, scanning transmission X-ray microscopy, confocal fluorescence microscopy and photo-induced force microscopy, are discussed on their important contributions to the better understanding of zeolites as they mainly focus on the micro- to nanoscale chemical imaging and the revelation of structure–composition–performance relationships. Some other techniques have a long and established history, e.g. nuclear magnetic resonance, infrared, neutron scattering, electron microscopy and X-ray diffraction techniques, and have gone through increasing developments allowing the techniques to discover new and important features in zeolite-based materials. Additional to the increasing application of these methods, multiple techniques are nowadays used to study zeolites under working conditions (i.e. the in situ/operando mode of analysis) providing new insights in reaction and deactivation mechanisms.

Funder

Houston Advanced Research Center

Publisher

Oxford University Press (OUP)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3