Author:
Lu Xiangyu,Gao Shanshan,Lin Han,Tian Han,Xu Deliang,Shi Jianlin
Abstract
Abstract
Nanocatalysts with enzyme-like catalytic activities, such as oxidase mimics, are extensively used in biomedicine and environmental treatment. Searching for enzyme-like nanomaterials, clarifying the origins of catalytic activity and developing activity assessment methodologies are therefore of great significance. Here, we report that oxidase catalysis and oxygen reduction reaction (ORR) electrocatalysis can be well bridged based on their identical activity origins, which makes facile electrocatalytic ORR activity measurements intrinsically applicable to oxidase-like activity evaluations. Inspired by natural heme-copper oxidases, Cu/Fe-doped single-atom catalysts (SACs) were first synthesized and used as model catalysts. Chromogenic reactions, electrochemical voltammetric measurements and density functional theory calculations further verified the linear relationship between the oxidase-like and ORR catalytic activities of the catalysts; thus, an effective descriptor ($| {\overline {{j_{\rm{n}}}} } |$) is proposed for rapid enzymatic catalyst evaluation. Evidence suggests that the enhanced tumour therapeutic efficacy of SACs is a result of their oxidase-like/ORR activities, which proves that numerous ORR electrocatalysts are promising candidates for oxidase mimics and tumour therapy. The synergistic catalytic effect of the biomimetic heterobinuclear Cu-Fe centres has also been thoroughly probed.
Funder
National Natural Science Foundation of China
Chinese Government Scholarship
Chinese Academy of Sciences
Publisher
Oxford University Press (OUP)
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献