Magnesium isotope geochemistry of the carbonate-silicate system in subduction zones

Author:

Wang Shui-Jiong1ORCID,Li Shu-Guang12

Affiliation:

1. State Key Laboratory of Geological Processes and Mineral Resources, and Institute of Earth Sciences, China University of Geosciences (Beijing) , Beijing 100083 , China

2. CAS Key Laboratory of Crust-Mantle Materials and Environments, School of Earth and Space Sciences, University of Science and Technology of China , Hefei 230026 , China

Abstract

Abstract The lighter magnesium (Mg) isotopic signatures observed in intraplate basalts are commonly thought to result from deep carbonate recycling, provided that the sharp difference in Mg isotopic composition between surface carbonates and the normal mantle is preserved during plate subduction. However, deep subduction of carbonates and silicates could potentially fractionate Mg isotopes and change their chemical compositions. Subducting silicate rocks that experience metamorphic dehydration lose a small amount of Mg, and preserve the original Mg isotopic signature of their protoliths. When the dehydrated fluids dissolve carbonate minerals, they may evolve into lighter Mg isotopic compositions. The solubility of carbonate minerals in fluids decreases in the order of calcite, aragonite, dolomite, magnesite and siderite, leading to selective and partial dissolution of carbonate minerals along the subduction path. At the island arc depth (70–120 km), the metamorphic fluid dissolves mainly Mg-poor calcites, and thus the fluid has difficulty modifying the Mg isotopic system of the mantle wedge and associated arc basalts. At the greater depth of the back arc system or continental margin (>150 km), the supercritical fluid can dissolve Mg-rich carbonate minerals, and its interaction with the mantle wedge could significantly imprint the light Mg isotopic signature onto the mantle rocks and derivatives. Meanwhile, the carbonate and silicate remaining within the subducting slab could experience elemental and isotopic exchange, during which the silicate can obtain a light Mg isotopic signature and high CaO/Al2O3, whereas the carbonates, particularly the Ca-rich limestone, shift Mg isotopes and MgO contents towards higher values. If this isotopic and elemental exchange event occurs widely during crustal subduction, subducted Ca-rich carbonates can partially transform into being Mg-rich, and a portion of recycled silicates (e.g. carbonated eclogites) can have light Mg isotopic composition alongside carbonates. Both serve as the low-δ26Mg endmember recycled back into the deep mantle, but the latter is not related to deep carbonate recycling. Therefore, it is important to determine whether the light Mg isotopic signatures observed in intraplate basalts are linked to deep carbonate recycling, or alternatively, recycling of carbonated eclogites.

Funder

National Natural Science Foundation of China

National Key R&D Program of China

Publisher

Oxford University Press (OUP)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3