Size controllable single-crystalline Ni-rich cathodes for high-energy lithium-ion batteries

Author:

Shi Ji-Lei12,Sheng Hang1,Meng Xin-Hai12,Zhang Xu-Dong1,Lei Dan1,Sun Xiaorui3,Pan Hongyi3,Wang Junyang3ORCID,Yu Xiqian3,Wang Chunsheng4,Li Yangxing56,Guo Yu-Guo12

Affiliation:

1. CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences (CAS) , Beijing 100190 , China

2. University of Chinese Academy of Sciences , Beijing 100049 , China

3. Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Physics, CAS , Beijing 100190 , China

4. Department of Chemical and Biomolecular Engineering, University of Maryland , College Park , MD 20742 , USA

5. Chery , Wuhu 241002 , China

6. New Energy Automobile Co., Ltd , Wuhu 241002 , China

Abstract

ABSTRACT A single-crystalline Ni-rich (SCNR) cathode with a large particle size can achieve higher energy density, and is safer, than polycrystalline counterparts. However, synthesizing large SCNR cathodes (>5 μm) without compromising electrochemical performance is very challenging due to the incompatibility between Ni-rich cathodes and high temperature calcination. Herein, we introduce Vegard's Slope as a guide for rationally selecting sintering aids, and we successfully synthesize size-controlled SCNR cathodes, the largest of which can be up to 10 μm. Comprehensive theoretical calculation and experimental characterization show that sintering aids continuously migrate to the particle surface, suppress sublattice oxygen release and reduce the surface energy of the typically exposed facets, which promotes grain boundary migration and elevates calcination critical temperature. The dense SCNR cathodes, fabricated by packing of different-sized SCNR cathode particles, achieve a highest electrode press density of 3.9 g cm−3 and a highest volumetric energy density of 3000 Wh L−1. The pouch cell demonstrates a high energy density of 303 Wh kg−1, 730 Wh L−1 and 76% capacity retention after 1200 cycles. SCNR cathodes with an optimized particle size distribution can meet the requirements for both electric vehicles and portable devices. Furthermore, the principle for controlling the growth of SCNR particles can be widely applied when synthesizing other materials for Li-ion, Na-ion and K-ion batteries.

Funder

National Natural Science Foundation of China

CAS Project for Young Scientists in Basic Research

Chinese Academy of Sciences

Youth Innovation Promotion Association CAS

Publisher

Oxford University Press (OUP)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3