Neuromorphic-computing-based adaptive learning using ion dynamics in flexible energy storage devices

Author:

Zhao Shufang1,Ran Wenhao1,Lou Zheng1,Li Linlin1,Poddar Swapnadeep2,Wang Lili1,Fan Zhiyong2,Shen Guozhen3

Affiliation:

1. State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, and Center of Materials Science and Optoelectronic Engineering, University of Chinese Academy of Sciences , Beijing 100083 , China

2. Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology , Hong Kong , China

3. School of Integrated Circuits and Electronics, Beijing Institute of Technology , Beijing 100081 , China

Abstract

Abstract High-accuracy neuromorphic devices with adaptive weight adjustment are crucial for high-performance computing. However, limited studies have been conducted on achieving selective and linear synaptic weight updates without changing electrical pulses. Herein, we propose high-accuracy and self-adaptive artificial synapses based on tunable and flexible MXene energy storage devices. These synapses can be adjusted adaptively depending on the stored weight value to mitigate time and energy loss resulting from recalculation. The resistance can be used to effectively regulate the accumulation and dissipation of ions in single devices, without changing the external pulse stimulation or preprogramming, to ensure selective and linear synaptic weight updates. The feasibility of the proposed neural network based on the synapses of flexible energy devices was investigated through training and machine learning. The results indicated that the device achieved a recognition accuracy of ∼95% for various neural network calculation tasks such as numeric classification.

Funder

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Multidisciplinary

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3