Isotopic constraints confirm the significant role of microbial nitrogen oxides emissions from the land and ocean environment

Author:

Song Wei1,Liu Xue-Yan1ORCID,Houlton Benjamin Z2,Liu Cong-Qiang1

Affiliation:

1. School of Earth System Science, Tianjin University , Tianjin 300072 , China

2. Department of Global Development and Department of Ecology and Evolutionary Biology, Cornell University , Ithaca , NY 14850 , USA

Abstract

Abstract Nitrogen oxides (NOx, the sum of nitric oxide (NO) and N dioxide (NO2)) emissions and deposition have increased markedly over the past several decades, resulting in many adverse outcomes in both terrestrial and oceanic environments. However, because the microbial NOx emissions have been substantially underestimated on the land and unconstrained in the ocean, the global microbial NOx emissions and their importance relative to the known fossil-fuel NOx emissions remain unclear. Here we complied data on stable N isotopes of nitrate in atmospheric particulates over the land and ocean to ground-truth estimates of NOx emissions worldwide. By considering the N isotope effect of NOx transformations to particulate nitrate combined with dominant NOx emissions in the land (coal combustion, oil combustion, biomass burning and microbial N cycle) and ocean (oil combustion, microbial N cycle), we demonstrated that microbial NOx emissions account for 24 ± 4%, 58 ± 3% and 31 ± 12% in the land, ocean and global environment, respectively. Corresponding amounts of microbial NOx emissions in the land (13.6 ± 4.7 Tg N yr−1), ocean (8.8 ± 1.5 Tg N yr−1) and globe (22.5 ± 4.7 Tg N yr−1) are about 0.5, 1.4 and 0.6 times on average those of fossil-fuel NOx emissions in these sectors. Our findings provide empirical constraints on model predictions, revealing significant contributions of the microbial N cycle to regional NOx emissions into the atmospheric system, which is critical information for mitigating strategies, budgeting N deposition and evaluating the effects of atmospheric NOx loading on the world.

Funder

National Natural Science Foundation of China

IAEA

Publisher

Oxford University Press (OUP)

Subject

Multidisciplinary

Reference93 articles.

1. Excess nitrogen in the US environment: trends, risks, and solutions;Davidson;Issues Ecol,2012

2. The NO2 flux conundrum;Lerdau;Science,2000

3. Megacity emissions and lifetimes of nitrogen oxides probed from space;Beirle;Science,2011

4. Microbial mechanisms and ecosystem flux estimation for aerobic NOy emissions from deciduous forest soils;Mushinski;Proc Natl Acad Sci USA,2019

5. The social costs of nitrogen;Keeler;Sci Adv,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3