The role of China's terrestrial carbon sequestration 2010–2060 in offsetting energy-related CO2 emissions

Author:

Huang Yao12ORCID,Sun Wenjuan1,Qin Zhangcai3ORCID,Zhang Wen2,Yu Yongqiang2,Li Tingting2,Zhang Qing2,Wang Guocheng2,Yu Lingfei1,Wang Yijie1,Ding Fan4ORCID,Zhang Ping5

Affiliation:

1. State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences , Beijing 100093 , China

2. State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences , Beijing 100029 , China

3. School of Atmospheric Sciences, Sun Yat-sen University , Guangzhou 510275 , China

4. College of Land and Environment, Shenyang Agricultural University , Shenyang 110866 , China

5. College of New Energy and Environment, Jilin University , Changchun 130021 , China

Abstract

Abstract Energy consumption dominates annual CO2 emissions in China. It is essential to significantly reduce CO2 emissions from energy consumption to reach national carbon neutrality by 2060, while the role of terrestrial carbon sequestration in offsetting energy-related CO2 emissions cannot be underestimated. Natural climate solutions (NCS), including improvements in terrestrial carbon sequestration, represent readily deployable options to offset anthropogenic greenhouse gas emissions. However, the extent to which China's terrestrial carbon sequestration in the future, especially when target-oriented managements (TOMs) are implemented, can help to mitigate energy-related CO2 emissions is far from certain. By synthesizing available findings and using several parameter-sparse empirical models that have been calibrated and/or fitted against contemporary measurements, we assessed China's terrestrial carbon sequestration over 2010–2060 and its contribution to offsetting national energy-related CO2 emissions. We show that terrestrial C sequestration in China will increase from 0.375 ± 0.056 (mean ± standard deviation) Pg C yr−1 in the 2010s to 0.458 ± 0.100 Pg C yr−1 under RCP2.6 and 0.493 ± 0.108 Pg C yr−1 under the RCP4.5 scenario in the 2050s, when TOMs are implemented. The majority of carbon sequestration comes from forest, accounting for 67.8–71.4% of the total amount. China's terrestrial ecosystems can offset 12.2–15.0% and 13.4–17.8% of energy-related peak CO2 emissions in 2030 and 2060, respectively. The implementation of TOMs contributes 11.9% of the overall terrestrial carbon sequestration in the 2020s and 23.7% in the 2050s. The most likely strategy to maximize future NCS effectiveness is a full implementation of all applicable cost-effective NCS pathways in China. Our findings highlight the role of terrestrial carbon sequestration in offsetting energy-related CO2 emissions and put forward future needs in the context of carbon neutrality.

Funder

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Multidisciplinary

Reference113 articles.

1. Summary for policymakers;Intergovernmental Panel on Climate Change,2013

2. Summary for policymakers;Intergovernmental Panel on Climate Change,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3