Monolithic integrated micro-supercapacitors with ultra-high systemic volumetric performance and areal output voltage

Author:

Wang Sen1,Li Linmei2,Zheng Shuanghao13,Das Pratteek14,Shi Xiaoyu1,Ma Jiaxin14,Liu Yu1,Zhu Yuanyuan1,Lu Yao2,Wu Zhong-Shuai13,Cheng Hui-Ming567

Affiliation:

1. State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023 , China

2. Department of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023 , China

3. Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences , Dalian 116023 , China

4. University of Chinese Academy of Sciences , Beijing 100049 , China

5. Faculty of Materials Science and Engineering/Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences , Shenzhen 518055 , China

6. Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences , Shenyang 110016 , China

7. Advanced Technology Institute, University of Surrey , Guildford GU2 7XH, UK

Abstract

ABSTRACT Monolithic integrated micro-supercapacitors (MIMSCs) with high systemic performance and cell-number density are important for miniaturized electronics to empower the Internet of Things. However, fabrication of customizable MIMSCs in an extremely small space remains a huge challenge considering key factors such as materials selection, electrolyte confinement, microfabrication and device-performance uniformity. Here, we develop a universal and large-throughput microfabrication strategy to address all these issues by combining multistep lithographic patterning, spray printing of MXene microelectrodes and controllable 3D printing of gel electrolytes. We achieve the monolithic integration of electrochemically isolated micro-supercapacitors in close proximity by leveraging high-resolution micropatterning techniques for microelectrode deposition and 3D printing for precise electrolyte deposition. Notably, the MIMSCs obtained demonstrate a high areal-number density of 28 cells cm−2 (340 cells on 3.5 × 3.5 cm2), a record areal output voltage of 75.6 V cm−2, an acceptable systemic volumetric energy density of 9.8 mWh cm−3 and an unprecedentedly high capacitance retention of 92% after 4000 cycles at an extremely high output voltage of 162 V. This work paves the way for monolithic integrated and microscopic energy-storage assemblies for powering future microelectronics.

Funder

National Natural Science Foundation of China

Chinese Academy of Sciences

Dalian Innovation Support Plan for High Level Talents

Dalian Institute of Chemical Physics

Dalian National Laboratory for Clean Energy

China Postdoctoral Science Foundation

Publisher

Oxford University Press (OUP)

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3