Molecular epidemiology and antimicrobial resistance of vaginal Candida glabrata isolates in Namibia

Author:

Dunaiski Cara M12,Kock Marleen M23,Chan Wai Yin456,Ismail Arshad478ORCID,Peters Remco P H2910ORCID

Affiliation:

1. Namibia University of Sciences and Technology, Department of Health and Applied Sciences , Windhoek 10005 , Namibia

2. University of Pretoria, Department of Medical Microbiology , Pretoria 0001 , South Africa

3. National Health Laboratory Service, Tshwane, Academic Division , Pretoria 3191 , South Africa

4. Sequencing Core Facility, National Institute for Communicable Diseases a Division of the National Health Laboratory Service , Johannesburg 2131 , South Africa

5. Department of Biochemistry, Genetics and Microbiology, University of Pretoria , Pretoria 0081 , South Africa

6. Right to care , Centurion 0157 , South Africa

7. Department of Biochemistry and Microbiology, Faculty of Science, Engineering and Agriculture, University of Venda , Thohoyandou 0950 , South Africa

8. Institute for Water and Wastewater Technology, Durban University of Technology , Durban 4000 , South Africa

9. University of Cape Town, Division of Medical Microbiology , Cape Town 7701 , South Africa

10. Foundation for Professional Development, Research Unit , East London 5217 , South Africa

Abstract

Abstract Candida glabrata is the most common non-albicans Candida species that causes vulvovaginal candidiasis (VVC). Given the intrinsically low susceptibility of C. glabrata to azole drugs, investigations into C. glabrata prevalence, fungal susceptibility profile, and molecular epidemiology are necessary to optimise the treatment of VVC. This molecular epidemiological study was conducted to determine antifungal drug profile, single nucleotide polymorphisms (SNPs) associated with phenotypic antifungal resistance and epidemic diversity of C. glabrata isolates from women with VVC in Namibia. Candida glabrata isolates were identified using phenotypic and molecular methods. Antifungal susceptibility of strains was determined for fluconazole, itraconazole, amphotericin B, and anidulafungin. Whole genome sequencing was used to determine SNPs in antifungal resistance genes and sequence type (ST) allocation. Among C. glabrata isolates, all (20/20; 100%) exhibited phenotypic resistance to the azole class antifungal drug, (fluconazole), and phenotypic susceptibility to the polyene class (amphotericin B), and the echinocandins (anidulafungin). Non-synonymous SNPs were identified in antifungal resistance genes of all fluconazole-resistant C. glabrata isolates including ERG6 (15%), ERG7 (15%), CgCDR1 (25%), CgPDR1 (60%), SNQ2 (10%), FKS1 (5.0%), FKS2 (5.0%), CgFPS1 (5.0%), and MSH2 (15%). ST15 (n = 8/20, 40%) was predominant. This study provides important insight into phenotypic and genotypic antifungal resistance across C. glabrata isolates from women with VVC in Namibia. In this study, azole resistance is determined by an extensive range of SNPs, while the observed polyene and echinocandin resistance-associated SNPs despite phenotypic susceptibility require further investigation.

Funder

University of Pretoria Doctoral Commonwealth Scholarship

Publisher

Oxford University Press (OUP)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3