A global two-layer radiative transfer model for axisymmetric, shadowed protoplanetary disks

Author:

Okuzumi Satoshi1ORCID,Ueda Takahiro23,Turner Neal J4

Affiliation:

1. Department of Earth and Planetary Sciences, Tokyo Institute of Technology , 2-12-1 Ookayama, Meguro, Tokyo 152-8551, Japan

2. National Astronomical Observatory of Japan , 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan

3. Max-Planck Institute for Astronomy (MPIA) , Königstuhl 17, D-69117 Heidelberg, Germany

4. Jet Propulsion Laboratory, California Institute of Technology , Pasadena, CA 91109, USA

Abstract

Abstract Understanding the thermal structure of protoplanetary disks is crucial for modeling planet formation and interpreting disk observations. We present a new two-layer radiative transfer model for computing the thermal structure of axisymmetric irradiated disks. Unlike the standard two-layer model, our model accounts for the radial as well as vertical transfer of the starlight reprocessed at the disk surface. The model thus allows us to compute the temperature below “shadowed” surfaces receiving no direct starlight. Thanks to the assumed axisymmetry, the reprocessed starlight flux is given in a one-dimensional integral form that can be computed at a low cost. Furthermore, our model evolves the midplane temperature using a time-dependent energy equation and can therefore treat thermal instabilities. We apply our global two-layer model to disks with a planetary induced gap and confirm that the model reproduces the disks’ temperature profiles obtained from more computationally expensive Monte Carlo radiative transfer calculations to an accuracy of less than 20%. We also apply the model to study the long-term behavior of the thermal wave instability in irradiated disks. Being simple and computationally efficient, the global two-layer model will be suitable for studying the interplay between disks’ thermal evolution and dust evolution.

Funder

JSPS

Jet Propulsion Laboratory

California Institute of Technology

NASA

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3