Spatially-resolved relation between [C i] 3P1–3P0 and 12CO (1–0) in Arp 220

Author:

Ueda Junko1ORCID,Michiyama Tomonari12ORCID,Iono Daisuke13ORCID,Miyamoto Yusuke1ORCID,Saito Toshiki14ORCID

Affiliation:

1. National Astronomical Observatory of Japan, National Institutes of Natural Sciences , 2-21-1 Osawa, Mitaka, Tokyo, 181-8588 , Japan

2. Department of Earth and Space Science, Graduate School of Science , Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043 , Japan

3. Department of Astronomical Science, The Graduate University for Advanced Studies , SOKENDAI, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 , Japan

4. College of Engineering , Nihon University, 1 Nakagawara, Tokusada, Tamuramachi, Koriyama, Fukushima 963-8642 , Japan

Abstract

Abstract We present $\sim {0.^{\prime \prime }3}$ (114 pc) resolution maps of [C i] 3P1–3P0 (hereafter [C i] (1–0)) and 12CO (1–0) obtained toward Arp 220 with the Atacama Large Millimeter/submillimeter Array. The overall distribution of the [C i] (1–0) emission is consistent with the CO (1–0). While the [C i] (1–0) and CO (1–0) luminosities of the system follow the empirical linear relation for the unresolved ULIRG sample, we find a sublinear relation between [C i] (1–0) and CO (1–0) using the spatially-resolved data. We measure the [C i] (1–0)$/$CO (1–0) luminosity ratio per pixel in star-forming environments of Arp 220 and investigate its dependence on the CO (3–2)$/$CO (1–0) ratio (RCO). On average, the [C i] (1–0)$/$CO (1–0) luminosity ratio is almost constant up to RCO ≃ 1 and then increases with RCO. According to the radiative transfer analysis, a high C i$/$CO abundance ratio is required in regions with high [C i] (1–0)$/$CO (1–0) luminosity ratios and RCO > 1, suggesting that the C i$/$CO abundance ratio varies at ∼100 pc scale in Arp 220. The [C i] (1–0)$/$CO (1–0) luminosity ratio depends on multiple factors and may not be straightforward to interpret. We also find the high-velocity components traced by [C i] (1–0) in the western nucleus, likely associated with the molecular outflow. The [C i] (1–0)$/$CO (1–0) luminosity ratio in the putative outflow is 0.87 ± 0.28, which is four times higher than the average ratio of Arp 220. While there is a possibility that the [C i] (1–0) and CO (1–0) emission traces different components, we suggest that the high line ratios are likely to be because of elevated C i$/$CO abundance ratios based on our radiative transfer analysis. A C i-rich and CO-poor gas phase in outflows could be caused by the irradiation of the cosmic rays, the shock heating, and the intense radiation field.

Funder

Japan Society for the Promotion of Science

National Science Foundation

National Institutes of Natural Sciences

National Research Council Canada

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Reference49 articles.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3