Reddening and darkening trends of on/off swirls and the relationship with magnetic field strength

Author:

Cho Eunjin12ORCID,Sim Chae Kyung1ORCID,Baek Seul-Min1ORCID,Jeong Minsup1ORCID,Choi Young-Jun12ORCID

Affiliation:

1. Korea Astronomy and Space Science Institute, 776 Daedeok-daero Yuseong-gu, Daejeon 34055, Republic of Korea

2. University of Science and Technology, 217 Gajeong-ro Yuseong-gu, Daejeon 34113, Republic of Korea

Abstract

Abstract Lunar swirls are albedo features associated with magnetic anomalies, and their formation mechanism has long been debated. Because spectral properties of lunar swirls provide information on space weathering environments and surface compositions, differences in the spectra between swirls and background regions can give a clue to their formation. We analyze space weathering for swirls in the lunar highlands and maria using the VIS-NIR spectral slope, 1550 nm reflectance, and 950 nm band depth. We find that highland swirls show lower reddening-to-darkening ratios than off-swirl regions, implying more decreases of nanophase iron relative to microphase iron on swirls. We also use magnetic field data to investigate the influence of the crustal magnetic field on the space weathering of a few selected swirls. The Reiner Gamma swirl becomes more immature as the magnetic field strength increases, although the entire swirl has a high albedo. Especially, the Reiner Gamma tail shows that the stronger magnetic field makes the surface undergo less spectral reddening. Our results support the solar wind stand-off hypothesis, which is that the solar wind deflected by the crustal field determines the optical property of the surface.

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3