Variability of Comptonized X-ray spectra of a super-Eddington accretor: Approach using Boltzmann radiation transport

Author:

Ogawa Takumi1,Ohsuga Ken1,Makino Yoshihiro2,Mineshige Shin3

Affiliation:

1. Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan

2. Graduate School of Science, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto, Kyoto 606-8502, Japan

3. Department of Astronomy, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto, Kyoto 606-8502, Japan

Abstract

Abstract We investigate the radiation fields around super-Eddington accretion flow, in which multiple inverse-Compton scattering plays a principal role, by using newly developed code describing Boltzmann radiation transfer in the Schwarzschild space-time. We apply this code to post-processing spectral calculations based on general relativistic, radiation magnetohydrodynamic simulation data to obtain X-ray spectra seen from various viewing angles. The radiation fields are distinctively separated into a funnel region with an opening angle of ∼30°, which is full with hot (gas temperature of T > 108 K), tenuous, and high-velocity plasmas, and surrounding cooler (T ∼ 107 K) and optically thick outflow regions. Accordingly, there is a clear tendency that the smaller the viewing angle, the harder the spectra. In particular, hard photons with several tens of keV are observable only by observers at viewing angles less than ∼30°, consistent with past spectral studies based on simulations. Further, we investigate how the spectra are varied by a flare occurring in the innermost region, finding that the variation amplitude grows as the photon energy increases and that the harder photons emerge more quickly than softer photons. The observational implications on long-term spectral variability of ultra-luminous X-ray sources are briefly discussed.

Funder

National Astronomical Observatory of Japan

JSPS

MEXT

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3