Cluster formation induced by a cloud–cloud collision in [DBS2003]179

Author:

Kuwahara Sho1,Torii Kazufumi2,Mizuno Norikazu3,Fujita Shinji4ORCID,Kohno Mikito4ORCID,Fukui Yasuo4

Affiliation:

1. Department of Astronomy, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 133-0033, Japan

2. Nobeyama Radio Observatory, 462-2 Minamimaki, Minamisaku, Nagano 384-1305, Japan

3. National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan

4. Department of Astrophysics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan

Abstract

Abstract [DBS2003]179 is a super star cluster in the Galaxy discovered in deep near-infrared observations. We carried out CO J = 1–0 and J = 3–2 observations of the region of [DBS2003]179 with NANTEN2, ASTE, and the Mopra 22 m telescope. We identified and mapped two molecular clouds that are likely to be associated with the cluster. This association is supported by the spatial correlation with the corresponding 8$\, \mu$m Spitzer image and by a high ratio of the two transitions of $^{12}$CO(J = 3–2 and J = 1–0). The two clouds show complementary distributions in space, and bridging features connect them in velocity. We hypothesize that the two clouds collided with each other 1–2 Myr ago and that the collision compressed the interfacial layer, triggering the formation of the cluster. This offers an additional piece of evidence for a super star cluster formed by a cloud–cloud collision, alongside the four super star clusters Westerlund$\:2$, NGC 3603, RCW 38, and R 136. These findings indicate that the known super star clusters with closely associated dust emission were formed by cloud–cloud collisions, lending support to the important role of cloud–cloud collisions in high-mass star formation.

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3