Integral field unit for the existing imaging and spectroscopy instrument, FOCAS

Author:

Ozaki Shinobu1ORCID,Fukushima Mitsuhiro1,Iwashita Hikaru1,Mitsui Kenji1,Hattori Takashi2,Lee Chien-Hsiu2,Tanaka Yoko2,Tsuzuki Toshihiro1,Miyazaki Satoshi1,Yamashita Takuya1,Okada Norio1,Obuchi Yoshiyuki1

Affiliation:

1. National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan

2. Subaru telescope, National Astronomical Observatory of Japan, 650 North A’ohoku Pl., Hilo, Hawaii 96720, USA

Abstract

Abstract The Faint Object Camera and Spectrograph (FOCAS) is an optical imaging and spectroscopy instrument for the Subaru Telescope. It has been a workhorse instrument since the first-light phase of the telescope. We describe an integral field unit (IFU) that has recently been installed in FOCAS. The IFU utilizes an image slicer that divides a ${13{^{\prime \prime }_{.}}5}$ × ${10{^{\prime \prime }_{.}}0}$ field of view into 23 stripes, with a width of ${0{^{\prime \prime }_{.}}435}$. A sky spectrum separated from an object by approximately ${5{^{\prime }_{.}}2}$ can be obtained at the same time as an object spectrum. Test observations confirmed that the image quality of the IFU does not degrade the ${0{^{\prime \prime }_{.}}435}$ sampling, and that slice width and length are consistent with the design. Highly reflective multilayer dielectric coatings were coated on all the mirrors in the IFU, thereby offering a high mean IFU throughput of ∼85% over the field. However, the outer part of the field showed throughput degradation, which was mainly caused by vignetting as a result of misalignment. The flat-fielding accuracy was degraded by the vignetting, with the variation depending on the direction of the telescope.

Funder

JSPS

NAOJ

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3