Co-inhibition of immunoproteasome subunits LMP2 and LMP7 enables prevention of transplant arteriosclerosis

Author:

Li Jun1ORCID,Hu Shaobo2,Johnson Henry W B3,Kirk Christopher J3,Xian Peng1,Song Yanping1,Li Yuan1,Liu Nan1,Groettrup Marcus45,Basler Michael45

Affiliation:

1. Department of Urologic Oncology Surgery, Chongqing University Cancer Hospital , Han Yu Road 181, 400030 Chongqing , China

2. Liver Transplant Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan 430022 , China

3. Kezar Life Sciences , South San Francisco, CA 94080 , USA

4. Division of Immunology, Department of Biology, University of Konstanz , Universitaetstrasse 10, D-78457 Konstanz , Germany

5. Biotechnology Institute Thurgau at the University of Konstanz , CH-8280 Kreuzlingen , Switzerland

Abstract

Abstract Aims The loss of vascular wall cells in allotransplanted arteries is the initial event leading to transplant arteriosclerosis (TA) and ensuing loss of allograft function. Pharmacological agents able to prevent TA are currently lacking. We previously showed that selective inhibition of the immunoproteasome prevented the chronic rejection of renal allografts. However, the role and mechanisms of selective inhibition of a single immunoproteasome subunit to prevent immune-mediated vascular allograft rejection and TA is not clear. Methods and results The effect and potential mechanism of combined or individual inhibition of peptidolytically active immunoproteasome LMP7 (β5i) and LMP2 (β1i) subunits on immune rejection-mediated TA was investigated using the epoxyketone inhibitor ONX 0914, and the recently developed LMP7-selective inhibitor KZR-329 and LMP2-selective inhibitor KZR-504 in a rat aorta transplantation model. We find that co-inhibition of LMP7 and LMP2 in allogeneic recipients significantly suppressed T-cell activation and function by expressing inhibitory surface markers and then activating inhibitory signals. Moreover, co-inhibition of LMP7 and LMP2 substantially reduced the number of immunoglobulin G-secreting cells and plasma cells and production of alloantibodies through activating the unfolded protein response and incapacitating the survival niche of plasma cells in the bone marrow. Consequentially, the accumulation of inflammatory cytokines, complement, and antibodies is reduced and the apoptosis of vascular wall cells decreased in aortic allografts via LMP7 and LMP2 co-inhibition with ONX 0914 treatment or combined KZR-329 and KZR-504 treatment. However, neither individual inhibition of LMP7 by KZR-329 nor individual inhibition of LMP2 by KZR-504 showed suppression of immune rejection and TA. Conclusions We define a critical role of LMP7 and LMP2 in TA and strongly propose co-inhibition of both immunoproteasome subunits as promising therapeutic approach to suppress TA and allograft rejection.

Funder

National Natural Science Foundation of China

Senior Medical Talents Program of Chongqing

German Research Foundation

Publisher

Oxford University Press (OUP)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3