Lower levels of small HDL particles associated with increased infectious disease morbidity and mortality: a population-based cohort study of 30 195 individuals

Author:

Harsløf Mads12ORCID,Pedersen Kasper M13ORCID,Afzal Shoaib13ORCID,Davey Smith George45,Nordestgaard Børge G13ORCID

Affiliation:

1. Department of Clinical Biochemistry, Copenhagen University Hospital, Herlev and Gentofte Hospital , Borgmester Ib Juuls Vej 73, DK-2730 Herlev , Denmark

2. The Copenhagen General Population Study, Copenhagen University Hospital, Herlev and Gentofte Hospital , Borgmester Ib Juuls Vej 73, DK-2730 Herlev , Denmark

3. Faculty of Health and Medical Sciences, University of Copenhagen , DK-2200 Copenhagen , Denmark

4. MRC Integrative Epidemiology Unit (IEU), Bristol Medical School, University of Bristol , BS8 2BN Bristol , United Kingdom

5. Population Health Sciences, Bristol Medical School, University of Bristol , BS8 2BN Bristol , United Kingdom

Abstract

Abstract Aims Low levels of HDL cholesterol have been associated with increased risk of infectious disease morbidity and mortality. Nuclear magnetic resonance (NMR) spectroscopy permits the measurement of HDL particle count and allows further subclassification according to particle size. We tested the hypothesis that low number of different HDL subfractions is associated with increased infectious disease morbidity and mortality. Methods and results HDL particle counts were measured using NMR spectroscopy in 30 195 individuals aged 22–99 years from the Copenhagen General Population Study. Using multiple-event Cox regression and cause-specific hazard models, we assessed risk of hospitalizations due to infection and infectious disease-related death, from 2003 through 2018. During follow-up, 9303 individuals had one or more infectious disease events, and 1558 experienced infectious disease-related death. In multifactorial adjusted analyses, low number of small and medium HDL particles was associated with increased risk of any infection and infectious disease-related death, whereas low number of large and extra-large HDL particles was not. A very high number of small and medium HDL particles was also associated with increased risk of any infection, but not with infectious disease-related death. For small and medium HDL particles and compared to individuals in the 91–95th percentile, hazard ratios (HRs) in individuals in the lowest percentile were 2.31 (95% confidence interval: 1.75, 3.05) for any infection and 3.23 (2.08, 5.02) for infectious disease-related death. For the highest percentile, corresponding HRs were 1.36 (1.07, 1.74) and 1.06 (0.57, 1.98), respectively. Individuals in the lowest percentile had increased risk of pneumonia (HR: 1.86; 95% confidence interval: 1.30, 2.65), sepsis (2.17; 1.37, 3.35), urinary tract infection (1.76; 1.17, 2.63), skin infection (1.87; 1.24, 2.81), gastroenteritis (1.78; 1.01, 3.16), and other infections (2.57; 1.28, 5.16). Conclusion Low number of the small HDL particles was associated with increased infectious disease morbidity and mortality.

Funder

Danish Karen Elise Jensen Foundation

Medical Research Council

Publisher

Oxford University Press (OUP)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3