Fictitious wave domain modelling and analysis of marine CSEM data

Author:

Lu Jie1,Li Yuguo12,Du Zhijun1

Affiliation:

1. College of Marine Geo-sciences and Key Lab of Submarine Geo-sciences and Prospecting Techniques of Ministry of Education, Ocean University of China, Qingdao 266100, China

2. Laboratory for Marine Mineral Resources, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China

Abstract

SUMMARY Modelling marine controlled-source electromagnetic (CSEM) responses in the fictitious time domain is a novel approach, which facilitates the full exploration of EM diffusive properties in the fictitious wave domain (FWD). Concepts, such as reflections, refractions, diffractions and transmissions, which are used for the analysis of elastic wave propagation can thus be adopted in FWD for interpreting CSEM data. In this paper, we use a high-order finite difference time domain (FDTD) algorithm for modelling marine CSEM responses in both the fictitious time domain and the diffusive frequency domain. A complex frequency shifted perfectly matched layer (CFS–PML) boundary condition is adopted to the FDTD modelling. We demonstrate the performance of the CFS–PML boundary condition and validate the high-order FDTD code in the FWD with the half-space sea water model and in the frequency domain with the 1-D canonical reservoir model. We investigate and analyse the propagation characteristics of electromagnetic fields in the FWD, where we apply wave propagation concepts to interpret marine CSEM data. Similarities between wave and field propagations relevant for marine CSEM data are demonstrated through several 1-D to 3-D numerical examples.

Funder

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3