Affiliation:
1. Los Alamos National Laboratory, Geophysics Group, MS D452, Los Alamos, NM 87545, USA
Abstract
SUMMARY
Moment-tensor inversion of induced microseismic events can provide valuable information for tracking CO2 plumes at geological carbon storage sites, and study the physical mechanism of induced microseismicity. Accurate moment-tensor inversion requires a wide-azimuthal coverage of geophones. Cost-effective microseismic monitoring for geological carbon storage often uses only one geophone array within a borehole, leading to a large uncertainty in moment-tensor inversion. We develop a new adaptive moment-tensor joint inversion method to reduce the inversion uncertainty, when using limited but typical geophone receiver geometries. We first jointly invert a number of clustered microseismic events using a uniform focal mechanism to minimize the waveform misfit between observed and predicted P and S waveforms. We then invert the moment tensor for each event within a limited searching range around the joint inversion result. We apply our adaptive joint inversion method to microseismic data acquired using a single borehole geophone array at the CO2-Enhanced Oil Recovery field at Aneth, Utah. We demonstrate that our inversion method is capable of reducing the inversion uncertainty caused by the limited azimuthal coverage of geophones. Our inverted strikes of focal mechanisms of microseismic events are consistent with the event spatial distribution in subparallel pre-existing fractures or geological imperfections. The large values up to 40 per cent of the CLVD components might indicate crack opening induced by CO2/wastewater injection or rupture complexity.
Funder
U.S. Department of Energy
Los Alamos National Laboratory
National Nuclear Security Administration
Publisher
Oxford University Press (OUP)
Subject
Geochemistry and Petrology,Geophysics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献