Quantitative Trait Locus Determining the Time of Blood Feeding in Culex pipiens (Diptera: Culicidae)

Author:

Hickner Paul V12ORCID,Mori Akio1,Rund Samuel S C13,Severson David W145ORCID

Affiliation:

1. Department of Biological Sciences, University of Notre Dame , Notre Dame, IN 46556 , USA

2. USDA-ARS, Knipling-Bushland U.S. Livestock Insects Research Laboratory , Kerrville, TX 78028 , USA

3. Center for Research Computing, University of Notre Dame , Notre Dame, IN 46556 , USA

4. Department of Life Sciences, University of the West Indies , Saint Augustine, Trinidad, West Indies

5. Department of Medical and Molecular Genetics, Indiana University School of Medicine , South Bend, IN , USA

Abstract

Abstract Mosquitoes and other blood feeding arthropods are vectors of pathogens causing serious human diseases, such as Plasmodium spp. (malaria), Wuchereria bancrofti (lymphatic filariasis), Borrelia burgdorferi (Lyme disease), and viruses causing dengue, Zika, West Nile, chikungunya, and yellow fever. Among the most effective strategies for the prevention of vector-borne diseases are those aimed at reducing human–vector interactions, such as insecticide applications and insecticide-treated bed nets (ITNs). In some areas where ITNs are widely used, behavioral adaptations have resulted in mosquitoes shifting their time of blood feeding to earlier or later in the night when the bed nets are not being employed. Little is known about the genetic basis of these behavioral shifts. We conducted quantitative trait locus (QTL) analysis using two strains of Culex pipiens sensu lato with contrasting blood feeding behaviors, wherein the lab adapted Shasta strain blood feeds at any time of the day or night, while the newly established Trinidad strain feeds only at night. We identified a single locus on chromosome 2 associated with the observed variation in feeding times. None of the core clock genes period, timeless, clock, cycle, PAR-domain protein 1, vrille, discs overgrown, cryptochrome 1, or cryptochrome 2 were located within the QTL region. We then monitored locomotor behavior to determine if they differed in their flight activity. The highly nocturnal Trinidad strain showed little daytime activity while the day-feeding Shasta strain was active during the day, suggesting blood feeding behavior and flight activity are physiologically linked.

Funder

National Institutes of Health

National Institute of Allergy and Infectious Diseases

National Science Foundation

Publisher

Oxford University Press (OUP)

Subject

Infectious Diseases,Insect Science,General Veterinary,Parasitology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Circadian and daily rhythms of disease vector mosquitoes;Current Opinion in Insect Science;2024-06

2. Scaling artificial light at night and disease vector interactions into socio-ecological systems: a conceptual appraisal;Philosophical Transactions of the Royal Society B: Biological Sciences;2023-10-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3