Variance component estimation and genome-wide association of predicted methane production in crossbred beef steers

Author:

Lakamp Andrew D1,Ahlberg Cashley M1,Allwardt Kristi2,Broocks Ashely2,Bruno Kelsey2,McPhillips Levi2,Taylor Alexandra2,Krehbiel Clint R23,Calvo-Lerenzo Michelle S24,Richards Chris J2ORCID,Place Sara E25,DeSilva Udaya2,Kuehn Larry A6ORCID,Weaber Robert L1ORCID,Bormann Jennifer M1,Rolf Megan M1ORCID

Affiliation:

1. Department of Animals Sciences and Industry, Kansas State University, Manhattan , KS 66506, USA

2. Department of Animal Science, Oklahoma State University , Stillwater, OK

3. Davis College of Animal Science, Texas Tech University , Lubbock, TX

4. Elanco Animal Health , Greenfield, IN

5. Colorado State University , Fort Collins, CO

6. USDA, ARS, Roman L. Hruska U.S. Meat Animal Research Center , Clay Center, NE

Abstract

Abstract Enteric methane is a potent greenhouse gas and represents an escape of energy from the ruminant digestive system. Additive genetic variation in methane production suggests that genetic selection offers an opportunity to diminish enteric methane emissions. Logistic and monetary difficulties in directly measuring methane emissions can make genetic evaluation on an indicator trait such as predicted methane production a more appealing option, and inclusion of genotyping data can result in greater genetic progress. Three predicted methane production traits were calculated for 830 crossbred steers fed in seven groups. The methane prediction equations used included mathematical models from Ellis et al. (2007), Mills et al. (2003), and IPCC (2019). Pearson correlations between the traits were all greater than 0.99, indicating that each prediction equation behaved similarly. Further, the Spearman correlations between the estimated breeding values for each trait were also 0.99, which suggests any of the predicted methane models could be used without substantially changing the ranking of the selection candidates. The heritabilities of Ellis, Mills, and IPCC predicted methane production were 0.60, 0.62, and 0.59, respectively. A genome-wide association study identified one single nucleotide polymorphism (SNP) that reached the threshold for significance for all of the traits on chromosome 7 related to oxidoreductase activity. Additionally, the SNP slightly below the significance threshold indicate genes related to collagen, intracellular microtubules, and DNA transcription may play a role in predicted methane production or its component traits.

Publisher

Oxford University Press (OUP)

Subject

Genetics,Animal Science and Zoology,General Medicine,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3