Compound bioengineering protein improves growth performance and intestinal health in broiler chickens under high-temperature conditions

Author:

Yin Shenggang1,Su Liuzhen2,Shao Quanjun1,Fan Zhiyong2,Tang Jiayong1,Jia Gang1,Liu Guangmang1ORCID,Tian Gang1,Chen Xiaoling1,Cai Jingyi1,Kang Bo3,Zhao Hua1

Affiliation:

1. Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, of Ministry of Agriculture and Rural Affairs, of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University , Chengdu 611130 , China

2. College of Animal Science and Technology, Hunan Agricultural University , Changsha 410128 , China

3. College of Animal Science and Technology, Sichuan Agricultural University , Chengdu, Sichuan 611130 , China

Abstract

AbstractIn recent years, more frequent and prolonged periods of high ambient temperature in summer compromised poultry production worldwide. This study was conducted to investigate the effects of compound bioengineering protein (CBP) on the growth performance and intestinal health of broilers under high ambient temperatures. A total of 400 one-day-old Arbor Acres birds were randomly distributed into five treatment groups: control group (CON) with basal diet, or a basal diet supplemented with CBP 250, 500, 750, and 1,000 mg/kg, respectively. The trial lasted 42 d, all birds were raised at normal ambient temperature for the first 21 d and then subjected to the artificial hyperthermal condition with the temperature at 32 ± 2 °C and relative humidity at 60 ± 5% during 22 to 42 d. Dietary CBP supplementation improved the growth performance and serum antioxidant capacity (total antioxidant capacity and total superoxide dismutase), and decreased serum cortisol, aminotransferase, and alkaline phosphatase of broilers. Dietary CBP inclusion enhanced intestinal barrier function by promoting intestinal morphology and reducing intestinal permeability (diamine oxidase), increased the intestinal antioxidant capacity by elevating glutathione peroxidase activity in the duodenum, reducing malondialdehyde content in the jejunum. Dietary CBP supplementation also alleviated intestinal inflammation by decreasing interleukin (IL)-6 content in the jejunum and ileum, promoting IL-10 levels in the ileum, down-regulating the mRNA abundance of intestinal inflammatory-related genes interferon-gamma (IFN-γ) in the duodenum and up-regulating IL-10 in the jejunum. Additionally, CBP increased the population of total bacteria and Lactobacillus in cecal chyme. Collectively, dietary CBP inclusion exerts beneficial effects on the broilers, which are reflected by enhancing antioxidant capacity, promoting intestinal barrier function, ameliorating intestinal immune response, and regulating intestinal bacteria, thus improving the growth performance of broilers under high-temperature conditions. In general, 750 mg/kg CBP supplementation is more effective.

Publisher

Oxford University Press (OUP)

Subject

Genetics,Animal Science and Zoology,General Medicine,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3