Depletion of chop suppresses procedural apoptosis and enhances innate immunity in loach Misgurnus anguillicaudatus under ammonia nitrogen stress

Author:

Lv Meiqi1,Zhang Yunbang1,Yang Lijuan1,Cao Xiaojuan12

Affiliation:

1. College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University , Wuhan 430070 , China

2. College of Fisheries, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education/Hubei Provincial Engineering Laboratory for Pond Aquaculture, Huazhong Agricultural University , Wuhan 430070 , China

Abstract

Abstract Ammonia nitrogen is highly toxic to fish, and it can easily cause fish poisoning or even high mortality. So far, many studies have been conducted on the damages to fish under ammonia nitrogen stress. However, there are few studies of ammonia tolerance improvement in fish. In this study, the effects of ammonia nitrogen exposure on apoptosis, endoplasmic reticulum (ER) stress, and immune cells in loach Misgurnus anguillicaudatus were investigated. Loaches (60 d post fertilization) were exposed to different concentrations of NH4Cl, and their survival rates were examined every 6 h. The results showed that high-concentration and long-time NH4Cl exposure (20 mM + 18 h; 15 mM + 36 h) induced apoptosis and gill tissue damages, finally causing a decline in survival. chop plays an important role in ER stress-induced apoptosis, and thus we constructed a model of chop-depleted loach by using CRISPR/Cas9 technology to investigate its response to ammonia nitrogen stress. The results showed that ammonia nitrogen stress down-regulated the expressions of apoptosis-related genes in chop+/− loach gills, while wildtype (WT) exhibited an opposite gene expression regulation pattern, suggesting that the depletion of chop suppressed apoptosis level. In addition, chop+/− loach showed a larger number of immunity-related cells and higher survival rate than WT under the NH4Cl exposure, indicating that the inhibition of chop function strengthened the innate immune barrier in general, thus increasing survival. Our findings provide the theoretical basis for developing high ammonia nitrogen-tolerant germplasm with aquaculture potential.

Funder

Fundamental Research Funds for the Central Universities of China

Publisher

Oxford University Press (OUP)

Subject

Genetics,Animal Science and Zoology,General Medicine,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3