Predicting microbial crude protein synthesis in cattle from intakes of dietary energy and crude protein

Author:

Galyean M L1,Tedeschi L O2

Affiliation:

1. Department of Veterinary Sciences, Texas Tech University , Lubbock , TX 79409-2123 USA

2. Department of Animal Science, Texas A&M University , College Station, TX 77843-2471 USA

Abstract

Abstract Accurate predictions of microbial crude protein (MCP) synthesis are needed to predict metabolizable protein supply in ruminants. Since 1996, the National Academies of Sciences, Engineering, and Medicine series on beef cattle nutrient requirements has used the intake of total digestible nutrients (TDN) to predict ruminal MCP synthesis. Because various tabular energy values for feeds are highly correlated, our objective was to determine whether intakes of digestible energy (DE), metabolizable energy (ME), and net energy for maintenance (NEm) could be used as predictors of MCP synthesis in beef cattle. A published database of 285 treatment means from experiments that evaluated MCP synthesis was updated with 50 additional treatment mean observations. When intakes of TDN, fat-free TDN, DE, ME, NEm, dry matter, organic matter, crude protein (CP), ether extract, neutral detergent fiber, and starch were used in a stepwise regression analysis to predict MCP, only intakes of DE and CP met the P < 0.10 criterion for entry into the model. Mixed-model regression analyses were used to adjust for random intercept and slope effects of citations to evaluate intake of DE alone or in combination with CP intake as predictors of MCP synthesis, and the intakes of TDN, ME, and NEm as alternatives to DE intake. Similar precisions in predicting MCP synthesis were obtained with all measures of energy intake (CV = root mean square error [RMSE] as a percentage of the overall mean MCP varied from 9% to 9.67%), and adding CP intake to statistical models increased precision (CV ranged from 8.43% to 9.39%). Resampling analyses were used to evaluate observed vs. predicted values for the various energy intake models with or without CP intake, as well as the TDN-based equation used in the current beef cattle nutrient requirements calculations. The coefficient of determination, concordance correlation coefficient, and RMSE of prediction as a percentage of the mean averaged 0.595%, 0.730%, and 28.6% for the four measures of energy intake, with average values of 0.630%, 0.757%, and 27.4%, respectively, for equations that included CP intake. The TDN equation adopted by the 2016 beef cattle nutrient requirements system yielded similar results to newly developed equations but had a slightly greater mean bias. We concluded that any of the measures of energy intake we evaluated can be used to predict MCP synthesis by beef cattle and that adding CP intake improves model precision.

Publisher

Oxford University Press (OUP)

Subject

Genetics,Animal Science and Zoology,General Medicine,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3