Affiliation:
1. National Center for International Research on Animal Gut Nutrition, Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University , Nanjing, Jiangsu 210095 , PR China
Abstract
Abstract
The site and extent of digestion of sorghum nutrients affected by tannins in the intestine are not clarified. Porcine small intestine digestion and large intestine fermentation were simulated in vitro to determine the effects of sorghum tannin extract on the digestion and fermentation characteristics of nutrients in the mimicked porcine gastrointestinal tract. In experiment 1, low-tannin sorghum grain without or with 30 mg/g sorghum tannin extract were digested by porcine pepsin and pancreatin to measure in vitro digestibility of nutrients. In experiment 2, the lyophilized porcine ileal digesta from 3 barrows (Duroc × Landrace × Yorkshire, 27.75 ± 1.46 kg) fed the low-tannin sorghum grain without or with 30 mg/g sorghum tannin extract and the undigested residues from experiment 1 were, individually, incubated with fresh pig cecal digesta as inoculums for 48 h to simulate the porcine hindgut fermentation. The results revealed that sorghum tannin extract decreased in vitro digestibility of nutrients both by pepsin hydrolysis or pepsin-pancreatin hydrolysis (P < 0.05). Although enzymatically unhydrolyzed residues provided more energy (P = 0.09) and nitrogen (P < 0.05) as fermentation substrates, the microbial degradation of nutrients from unhydrolyzed residues and porcine ileal digesta were both decreased by sorghum tannin extract (P < 0.05). Regardless of unhydrolyzed residues or ileal digesta as fermentation substrates, microbial metabolites including the accumulative gas production excluding the first 6 h, total short-chain fatty acid and microbial protein content in the fermented solutions were decreased (P < 0.05). The relative abundances of Lachnospiraceae AC2044 and NK4A136 and Ruminococcus_1 was decreased by sorghum tannin extract (P < 0.05). In conclusion, sorghum tannin extract not only directly decreased the chemical enzymatic digestion of nutrients in the simulated anterior intestine, but also directly inhibited the microbial fermentation including microbial diversities and metabolites in the simulated posterior intestine of pigs. The experiment implies that the decreased abundances of Lachnospiraceae and Ruminococcaceae by tannins in the hindgut may weaken the fermentation capacity of microflora and thus impair the nutrient digestion in the hindgut, and ultimately reduce the total tract digestibility of nutrients in pigs fed high tannin sorghum.
Funder
National Natural Science Foundation of China
China Postdoctoral Science Foundation
Publisher
Oxford University Press (OUP)
Subject
Genetics,Animal Science and Zoology,General Medicine,Food Science