GoatFADS2controlling fatty acid metabolism is directly regulated bySREBP1in mammary epithelial cells

Author:

Wu Jiao1ORCID,Luo Jun1,Xia Yingying1,An Xuetong1,Guo Peng1,He Qiuya1,Tian Huibin1ORCID,Hu Qingyong1,Li Cong1,Wang Hui2

Affiliation:

1. Shaanxi Provincial Key Laboratory of Agricultural Molecular Biology, College of Animal Science and Technology, Northwest A & F University , Yangling 712100 , PR China

2. Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University , Chengdu, Sichuan 610041 , PR China

Abstract

AbstractGoat milk provides benefits to human health due to its richness in bioactive components, such as polyunsaturated fatty acids (PUFAs). The fatty acid desaturase 2 (FADS2) is the first rate-limiting enzyme in PUFAs biosynthesis. However, its role and transcriptional regulation mechanisms in fatty acid metabolism in dairy goat remain unclear. Here, our study revealed that the FADS2 gene was highly expressed during the peak lactation compared with the dry period, early lactation, and late lactation. The content of triacylglycerol (TAG) was enhanced with the increasing mRNA expression of TAG synthesis genes (diacylglycerol acyltransferase 1/2, DGAT1/2) in FADS2-overexpressed goat mammary epithelial cells (GMECs). Overexpression of FADS2 was positively correlated with the elevated concentrations of dihomo-gamma-linolenic acid (DGLA) and docosahexaenoic acid (DHA) in GMECs. BODIPY staining showed that FADS2 promoted lipid droplet accumulation in GMECs. To clarify the transcriptional regulatory mechanisms of FADS2, 2,226 bp length of FADS2 promoter was obtained. Deletion mutation assays revealed that the core region of FADS2 promoter was located between the −375 and −26 region, which contained SRE1 (−361/−351) and SRE2 (−191/−181) cis-acting elements of transcription factor sterol regulatory element-binding protein 1 (SREBP1). Overexpression of SREBP1 enhanced relative luciferase activity of the single mutant of SRE1 or SRE2, vice versa, and failed to alter the relative luciferase activity of the joint mutant of SRE1 and SRE2. Chromatin immunoprecipitation (ChIP) and site-directed mutation assays further demonstrated that SREBP1 regulated the transcription of the FADS2 gene by binding to SRE sites in vivo and in vitro. In addition, the mRNA levels of FADS2 were significantly decreased by targeting SRE1 and SRE2 sites in the genome via the CRISPR interference (CRISPRi) system. These findings establish a direct role for FADS2 regulating TAG and fatty acid synthesis by SREBP1 transcriptional regulation in dairy goat, providing new insights into fatty acid metabolism in mammary gland of ruminants.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

Oxford University Press (OUP)

Subject

Genetics,Animal Science and Zoology,General Medicine,Food Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3