Affiliation:
1. Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University , Chengdu, Sichuan 611130 , China
2. Animal Nutrition Institute, Faculty of Agriculture, Forestry and Food Engineering, Yibin University , Yibin, Sichuan 644000 , China
3. Chelota Group , Guanghan 618300 , China
Abstract
Abstract
Zinc (Zn) is an essential trace element that has physiological and nutritional functions. However, excessive use of Zn can lead to waste of resources. In this study, we compared the effects of inorganic (ZnSO4) and organic Zn glycine chelate (Zn-Gly) on the growth performance, intestinal morphology, immune function, barrier integrity, and gut microbiome of Cherry Valley ducks. We randomly divided 180 one-day-old male meat ducks into three groups, each with six replicates of 10 birds: basal diet group (CON), basal diet with 70 mg Zn/kg from ZnSO4 (ZnSO4 group), and basal diet with 70 mg Zn/kg from Zn-Gly (Zn-Gly group). After 14 and 35 d of feeding, birds in the Zn groups had significantly increased body weight and average daily gain (ADG), decreased intestinal permeability indicator d-lactate, improved intestinal morphology and barrier function-related tight junction protein levels, and upregulated mucin 2 and secretory immunoglobulin A levels compared to the control (P < 0.05). Additionally, compared to the ZnSO4 group, we found that supplementation with Zn-Gly at 70 mg/kg Zn resulted in the significant increase of body weight at 35 d, 1 to 35 d ADG and average daily feed intake, villus height at 14 and 35 d, secretory immunoglobulin A and immunoglobulin G at 14 d, and mucin 2 mRNA level at 14 d (P < 0.05). Compared with the control group, dietary Zn had a significant effect on the gene expression of metallothionein at 14 and 35 d (P < 0.05). 16S rRNA sequencing showed that Zn significantly increased alpha diversity (P < 0.05), whereas no differences in beta diversity were observed among groups (P > 0.05). Dietary Zn significantly altered the cecal microbiota composition by increasing the abundances of Firmicutes, Blautia, Lactobacillus, Prevotellaceae NK3B31, and [Ruminococcus] torques group and reducing that of Bacteroides (P < 0.05). Spearman correlation analysis revealed that the changes in microbiota were highly correlated (P < 0.05) with growth performance, intestinal morphology, and immune function-related parameters. Taken together, our data show that, under the condition of adding 70 mg/kg Zn, supplementation with Zn-Gly promoted growth performance by regulating intestinal morphology, immune function, barrier integrity, and gut microbiota of Cherry Valley ducks compared with the use of ZnSO4 in feed.
Funder
Natural Science Foundation of Sichuan Province
Sichuan Longda Animal Husbandry Science and Technology Co., Ltd
Publisher
Oxford University Press (OUP)
Subject
Genetics,Animal Science and Zoology,General Medicine,Food Science