Monoammonium glycyrrhizinate improves antioxidant capacity of calf intestinal epithelial cells exposed to heat stress in vitro

Author:

Wang Yuexin12345,Meng Sudan12345,Wang Shuai1234,Wang Zhaojun1234,Dou Xueru1234,Dou Mengying1234,Li Yuanxiao1234,Ma Yanbo5,He Lei1234,Shao Qi1234,Zhang Cai12346ORCID

Affiliation:

1. Henan , Luoyang 471023 , China

2. International , Luoyang 471023 , China

3. Joint , Luoyang 471023 , China

4. Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology , Luoyang 471023 , China

5. Innovative Research Team of Livestock Intelligent Breeding and Equipment, Longmen Laboratory , Luoyang 471023 , China

6. Henan Engineering Research Center of Livestock and Poultry Emerging Disease Detection and Control , Luoyang 471023 , China

Abstract

Abstract Dairy calves are highly susceptible to the negative effects of heat stress, which can cause organ hypoxia after blood redistribution, damage the intestinal barrier, and trigger intestinal oxidative stress. This study aimed to investigate the antioxidant effects of monoammonium glycyrrhizinate (MAG) on calf small intestinal epithelial cells under heat stress in vitro. Small intestinal epithelial cells were isolated from a 1-d-old healthy calf and purified by differential enzymatic detachment. The purified cells were divided into seven groups. The control group was cultured with DMEM/F-12 at 37 °C for 6 h, and the treatment groups were cultured with 0, 0.1, 0.25, 0.5, 1, or 5 μg/mL MAG at 42 °C for 6 h. Heat stress causes oxidative damage to cells. Adding MAG to the medium can significantly improve cell activity and reduce cellular oxidative stress. MAG significantly increased the total antioxidant capacity and superoxide dismutase activity caused by heat stress, and significantly decreased malondialdehyde and nitric oxide levels. The MAG treatment also reduced lactate dehydrogenase release, increased mitochondrial membrane potential, and decreased apoptosis under heat stress. MAG also upregulated the expression of the antioxidant-related genes, Nrf2 and GSTT1, in heat-stressed intestinal epithelial cells and significantly downregulated the expression of the heat shock response-related proteins, MAPK, HSP70, HSP90, and HSP27. From the above results, we conclude that 0.25 μg/mL MAG improves the capability of the antioxidant system in small intestinal epithelial cells to eliminate reactive oxygen species by activating antioxidant pathways, improving the oxidant/antioxidant balance, lowering excessive heat shock responses, and reducing intestinal oxidative stress.

Publisher

Oxford University Press (OUP)

Subject

Genetics,Animal Science and Zoology,General Medicine,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3